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Abstract

This thesis discusses the design of a control-oriented modeling approach to Lithium-
Ion battery modeling, as well as the application of adaptive observers to this structure.
It begins by describing the fundamental problem statement of a battery management
system (BMS), and why this is challenging to solve. It continues by describing, in
brief, several different modeling techniques and their use cases, then fully expounds
two separate high fidelity models. The first model, the ANCF, was initiated in pre-
vious work, and has been updated with novel features, such as dynamic diffusion
coefficients. The second model, the ANCF II, was developed for this thesis and up-
dates the previous model to better solve the problems facing the construction of an
adaptive observer, while maintaining its model accuracy. The results of these models
are presented as well.

After establishing a model with the desired accuracy and complexity, foundational
observers are designed to estimate the states and parameters of the time-varying ionic
concentrations in the solid electrode and electrolyte, as well as an a-priori estimate
of the molar flux. For the solid electrode, it is shown that a regressor matrix can
be constructed for the observer using both spatial and temporal filters, limiting the
amount of additional computation required for this purpose. For the molar flux
estimate, it is shown that fast convergence is possible with coefficients pertaining
to measurable inputs and outputs, and filters thereof. Finally, for the electrolyte
observer, a novel structure is established to restrict learning only along unknown
degrees of freedom of the model system, using a Jacobian steepest descent approach.
Following the results of these observers, an outline is sketched for the application of
a machine learning algorithm to estimate the nonlinear effects of cell dynamics.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Senior Research Scientist
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Chapter 1

Introduction

With the advent of the mobile information age, the population has demanded energy

storage capable of producing the magnitude of power necessary to energize the devices

of modernity. The answer has come in the form of high energy density battery cells,

used to power myriad technologies. These range from smaller mobile computing

devices, such as cellphones and laptops, to the more demanding nature of larger

energy sinks, like that of an electric vehicle. However, unlike more physically explicit

energy storage devices, where one can calculate the energy potential of a fossil fuel or

measure the pressure of a compressed air tank, the exact status of a cell is generally

speaking unknown, with a reliance on empirical models or cutting-edge computing

means. All of this is done in the interest of providing a safe, reliable means of utility

for a cell, while optimizing its performance.

The performance of these cells is an area of intense research, from improving the

capacity with new materials to using an algorithmic approach, and it is this research

that drives the practical application of the technology to further heights. With respect

to algorithms that increase the capabilities of cells, the foundational strength of any

given approach is beholden to the quality of the underlying model, another area of

research in literature. Only with a high fidelity model can designers begin to have

full knowledge of the cell, allowing for advanced approaches to control. This thesis

will focus on the construction of accurate models to be used with adaptive methods

for estimation.
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1.1 Battery Overview

The multitude of cell types allows for a wide variety of applications. In fact, electro-

chemical battery technology is a long-standing focus, beginning in the first century

BCE in the Persian civilization, while the ubiquity of the electrochemical cell came in

the late 1700’s from the efforts of Luigi Galvani and Alessandro Volta [49]. Since then,

the field has grown rapidly, with many types of chemistry leveraging a wide variance

in capability. The particular choice of chemistry is dependent on application, with

an onus placed on the designer to choose one with more benefits than shortcomings.

Figure 1-1: A comparison of the energy density of several battery chemistries [56].

A popular chemistry variant is that of the Lithium-ion (Li-ion) battery. These

cells provide a high energy density, combined with minimal self-discharge when in

an unused state, making them ideal candidates for use in technology as production

costs decline [11]. This is depicted in Figure 1-1, showing a comparison of several

battery chemistries. It is notable that several common battery types have lower

energy densities, such as the Lead-acid batteries found in automobiles, or the Nickel-

Cadmium batteries that are common in households. Lithium metal is, however, useful
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for an anode material as it is the lightest, with an equivalent weight𝑀 = 6.94 gmol−1,

and has the highest potential, with an electropositivity 𝜑 = −3.04V, of any metal [56].

Lithium-ion batteries, therefore, pose a unique opportunity for lightweight, small-size

batteries. A distinction is made between a battery pack and an electrochemical cell,

whereas battery packs combine several cells for the purpose of higher voltage, in a

series orientation, and higher capacity, in a parallel orientation. These packs can be

designed through custom means, but often have issues with individual cell health, as

a function of imbalance amongst the current state of ion intercalation.

In the simplest terms, a Li-ion cell operates by transferring positively charged

Lithium ions from a negative volume (anode) to a positive volume (cathode), in

the case of discharge, or a vice-versa for charging, through an electrically insulating

material called a separator. These ions are drawn to the opposing side by a poten-

tial imbalance, due to the disassociation of electrons in the form of current running

through an implicit load, then carried via an electrolyte and intercalate into the op-

posing solid, working to balance the potential difference between volumes. Figure 1-2

depicts this action, with a nominal load attached to show the transition of electrons.

Figure 1-2: An image depicting the function of a Li-ion cell.

Intuitively, the instantaneous capability of a cell is a function of the total Lithium

available for intercalation, as well as the parameters which govern the transfer of these

ions, the values of which are unmeasurable directly in the normal operation of a cell.
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This notion is the motivation for a battery management system (BMS), which tries

to track such values to optimize, while maintaining safety, the performance of a cell.

1.2 Motivation for Battery Management Systems

Chapter 2 will discuss the full motivation of developing BMSs, outlining proposed

techniques for safe operation of a battery. The purpose of the battery management

system is to provide a desired power for a given load, and estimating two defining

metrics of a cell’s state [11]. The first is state of charge (SoC), which describes the

capacity of a cell at a given point, as a function of available Lithium. The second is

state of health (SoH), which describes the relative health of a battery, as a function

of the degradation of its internal parameters. More explicative definitions of these

metrics will be provided in Chapter 2.

The consequences of incorrect assessments of either of these metrics have been

shown to be devastating. In recent years, multiple examples of these consequences

have manifested in instances of battery packs catching fire, often in high profile cir-

cumstances, including the battery fire on-board a Boeing Dreamliner in 2014 [34], the

repeated battery fires of the "hoverboard" products in 2015 and 2016 [13], and the

battery failures within the Samsung Galaxy Note 7 in 2016 [25]. These are only exam-

ples of the last several years, which should make clear the magnitude of the problem

faced while handling this technology. Many of these failures have been attributed to

manufacturing defects, which is a misestimation of the SoH of a cell, or aggressive use

of the batteries, which is a control scheme that does not properly account for the SoC

of the cell. With a proper BMS, many of these problems could have been avoided,

but the current state of the industry does not integrate complex algorithms into their

products. The stakes are even higher when considering the problem from the per-

spective of an electric vehicle manufacturer. The batteries in use in these automobiles

are an order of magnitude or more larger in capacity than a cell phone or a child’s

toy, thus substantially increasing the risk to users. Conversely, the viability of the

technology is dependent on fast charging and discharging, to provide reasonable drive
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time and power to consumers. If the industry is to advance into the mainstream, it

is necessary for new, advanced BMSs to be developed in conjunction with the vehi-

cles themselves. These systems will be reliant on accurate estimates of parameters

and states of the cells, using novel electrochemical models as the foundation for their

success.

1.3 Modeling Overview

Chapter 3 discusses a variety of approaches and techniques for the modeling of batter-

ies. There are two prevailing architectures of these models, namely simplified approx-

imations that sacrifice intuitive physical parameters for computational simplicity, and

complex electrochemical models that generate high accuracy with many parameters.

There are virtues and shortcomings to either approach, and it is the responsibility of

the BMS designer to choose, with a-priori knowledge, what the expected model needs

to be capable of handling.

The simplified approximation approach generally relies on creating a model using

a non-physical facsimile of the dynamics of the cell, understanding that the diffusion

and potential characteristics can be abstracted to provide tractable computational

complexity. One such model is the Kinetic Battery Model [46], while another is any

variety of Equivalent Circuit Model [59] [28], both of which will be discussed further in

Chapter 3. The alternative approach, an electrochemical model, is based on physical

descriptions of the diffusion and potential within the cell. A popular foundation

for these models is the Doyle-Fuller-Newman (DFN) variant [15] [14], which is an

oft implemented model using several partial differential equations and an algebraic

constraint to describe the system. There are several instances in literature of using the

DFN model with other model order reduction techniques [31] [33] [7] [8], which will

be elaborated in Chapter 3, but one technique that remains popular for its retention

of physical parameters is the single particle model [41] [48] [47]. This is the coarsest

simplification of the DFN, and assumes no ionic variation in the electrolyte.

Finally, Chapter 3 reviews the novel modeling contributions made by this thesis
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and its predecessor [5], known as the ANCF and ANCF II models. These models

incorporate third-order polynomial descriptions of the physical dynamics, while also

maintaining a minimal number of states and parameters for subsequent use in an

adaptive observer. The intention behind these models is to match the voltage output

of the battery at high charging and discharging levels, while also maintain the few

parameters mentioned. This is achieved, in the ANCF, with excellent accuracy of

simulation results, and the third-order polynomial basis function representation of

concentrations and the algebraic constraint. Pushing the minimal states to their

limit, the importance of which will be discussed with adaptive observers, the ANCF

II utilizes a mixed basis function technique, with linear basis functions for states

that are less susceptible to high order dynamics, while maintaining the third-order

polynomial for concentrations with high gradients. Around this second model, a set

of adaptive observers are created, in the interest of state and parameter estimation.

1.4 Adaptive Observer Overview

Chapter 4 discusses the application of adaptive observers to the models established

in Chapter 3. Adaptive observers have been in literature [37] for some time now, but

their application to battery models is nascent. The premise of adaptive observers is

the creation of an equivalent system, which uses both the inputs and the outputs of a

system, filtered to create a regressor. This regressor has associated parameters that

can define the nonminimal form of the system, which includes parameters for all coef-

ficients of the associated transfer function’s numerator and denominator. Therefore,

with the proper input and output signals, the full system can be estimated, including

the states and parameters of the system matrices.

The first presentation of the adaptive observer in Chapter 4 is an establishment of

the notation for the equivalent system in the vector regressor form. The distinction

here is that a single regressor vector has its own associated single-input, single-output

system, with a set of parameters unique to that system. This system has shown

successful results [6], but often relies on a very high order of persistent excitation for
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successful convergence, as well as adaptive gains. This latter portion contributes an

additional 𝑁 integration terms to the already 2𝑁 + 1 parameters of the nonminimal

system, without additional linearly independent regressor terms which makes the

simulation cumbersome.

The second presentation of the adaptive observer builds on the first implemen-

tation by creating a matrix regressor. In short, this matrix is similar to the vector

regressor, but instead, each column represents a filtered form of the equivalent system,

to create a matrix with a rank greater than or equal to the number of nonminimal

parameters, 2𝑁 + 1. If a proper filter is chosen, this requires less persistent excita-

tion of the equivalent system, and is therefore more enticing of an option for creating

observers on highly unknown systems.

Finally, this observer structure is built around the ANCF II model. The model is

separated in such a way as to allow separate observers to be used for the electrolyte

and solid electrode dynamics, utilizing the matrix regressor form for each. Results

for this research are shown, with novel techniques in many facets. This approach

has many challenges, given the structure of the model, and the required assumptions

needed for the observers to operate. Parts of the system are unobservable at certain

points, and therefore, the sensitivity of the observers needs to be adjusted. Future

work needed for the successful implementation of these observers is also discussed, as

it relates to the topic of machine learning.

1.5 Preliminary Summary of Results and Contribu-

tions Made

The major contributions of this thesis can be seen in Chapters 3 and 4. With respect

to modeling, this thesis contributed to both the ANCF model, by way of removing

an ad-hoc determination of the electrolyte diffusion coefficient that made it difficult

to run varying simulation input profiles without a calculation of the diffusion coef-

ficient a-priori, as discussed in Section 3.4. Furthermore, this thesis contributed an
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additional reduced-order model that identified the portions of the dynamics in need

of a high order basis function, while eliminating the additional terms for less dynamic

states. This approach is discussed at length in Section 3.5, and it is shown that a

comparable accuracy is achieved, with results established in Tables 3.2 and 3.3.

After establishing the accuracy of the ANCF II model in Chapter 3, Chapter 4

describes the design and construction of adaptive observers applied to this model.

In Section 4.3.1, a novel observer is constructed using the matrix-regressor approach

established in literature, but combining the temporal filters with spatial filters. In

Section 4.3.2, a novel approach to making an a-priori estimate of the molar flux is

established, using measurements of output voltage, input currents and filters of the

latter. Finally, in Section 4.3.3, a completely new adaptive observer approach is

derived using a directed Jacobian parameter update for a subset of parameters that

represent the physical unknowns of a system within a known model structure. This

method is inspired by gradient descent algorithms, but is implemented on-line for

parameter and state estimation.
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Chapter 2

Battery Management Systems

The role of the battery management system (BMS) is to provide on-line, accurate

estimations of two distinct metrics of the status of a cell, as discussed briefly in

Chapter 1.2. These metrics are the state of charge (SoC), a description of the capacity

of the battery at a given state of ion intercalation, and the state of health (SoH), a

description of the relative degradation of parameters of a cell over time. These two

metrics can be used to define control schemes for a cell, as well as anticipate when a

battery must be replaced.

There are many instantiations of the BMS, ranging in sophistication from simplis-

tic, linearized models, to advanced versions that incorporate state of the art methods

for measuring the SoC and SoH. A block diagram of a BMS is shown in Figure 2-1,

highlighting the use of available measurements for purposes of state identification.

The choice of implementation is often determined by the specific application, for ex-

ample, devices that pull small currents from a battery, such as a cellphone, do not

need to rely on advanced battery management systems, as the dynamics of the battery

under those conditions can generally operate within the linear range of cell dynamics.

This often means that the battery is over-sized for the necessary capacity, to avoid

entering the fringe conditions of the operation of the cell. These fringe conditions are,

in fact, nonlinear, and therefore require a more complex algorithm to safely operate

within. This, however, limits the ability to charge the battery at a high rate, as

intuition suggests. Conversely, if the operating conditions of the cell are of a high
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Figure 2-1: A block diagram of a battery management system in operation with cell
measurements.

magnitude, such as that of an electric vehicle (EV), the need for a more advanced

BMS becomes apparent. Low estimates, with an assumption of low gasoline prices

and constant EV cost, predict a market share of 60% by 2040 for EV’s [51], over the

current share of <0.1% of plug-in EV’s worldwide [45]. This represents a huge chal-

lenge, as the success of the EV market is highly sensitive to the cost of the vehicle, as

well as the preference of vehicle cost for a consumer [51]. One of the primary drivers

of an EV’s cost is the battery, and the two approaches for reducing this cost include

improved electrochemical capacities, which have been recognized in significant ways

with a 14% annual reduction in costs between 2007 and 2014 [42], and sophisticated

means of identifying the SoC and SoH of a battery pack.

2.1 State and Parameter Identification Problem

The role of a BMS is a nominally simple one: to predict the status of a battery pack

through two metrics, those of SoC and SoH, ensuring safe use and operation of the cell

while optimizing the performance through informed control schemes. The difficulty

comes in the observability of these metrics, as they are not directly measurable outside

of a laboratory setting. This motivates the need for estimation of the states and

parameters of a cell, to fully characterize its status at a given time. The metric of

SoC is a measurement that denotes the intercalated lithium in a solid particle at its
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surface, normalized by the maximum capacity of that solid, defined as local utilization.

This is a measurement of the charge available in the solid electrode, analogous to a fuel

gauge in a vehicle. Because the total quantity of lithium ions in the cell is conserved,

albeit in the electrolyte as well as the solid, it is sufficient to calculate the SoC of a

single volume, namely the anode or cathode [11]. Within the duration of a charge

cycle, this is a rapidly varying state that is dependent on the diffusion of ions into the

solid particles, as a function of current and cell potentials. The accurate estimation

of the SoC is highly valuable, as it ensures that a cell can be operated within its

safe limits without being oversized. Specifically, if the SoC is underestimated, the

capacity of a cell is underutilized, while if the SoC is overestimated, the cell can be

discharged or charged past its safe limits. Therefore, the accurate estimation of the

SoC is driven by the desire for reducing the cost of a battery under a notional load

cycle, as well as safe operation within that cycle.

Conversely, the SoH is a slow-changing metric that defines the degradation of

physical parameters of the cell over its lifetime. This value is often attributed to two

causations [35]: capacity fade of the cell, as a function of the fraction of the cell volume

available for intercalation, as well as the increase of impedance due to the internal

ohmic resistance of the cell, known as interphase resistivity. The phenomenon of

changing SoH is characterized by long timelines, much longer than that of the change

in SoC, with nominal capacity reduction of a cell reaching 25% after two years [35]. A

higher impedance reduces the available power discharge, as well as increases the heat

dissipation within the cell, causing potentially a 20% reduction in power availability

[35]. At some point this degradation becomes untenable, motivating a cell to be

recycled, but without a way of estimating SoH, this threshold is left to the intuition

of users and a heuristic approach relying on expected degradation or servicing time

to determine the health of a battery offline. Without a quantitative measurement to

support this decision, users of electric vehicles or other devices containing batteries

may be frustrated with the unacceptably low capacity of the battery, or exposed to

the dangerous potential of charging or discharging past the safe limit of a battery.

Therefore, regardless of the application, some sort of BMS is needed, even in its most
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simple form, to ensure the usability of these products. These exist, and can be used to

some success, assuming the battery remains within a fairly benign operational subset.

2.2 Simplified Monitoring Systems

In the interest of simplicity, many monitoring systems have been proposed to abstract

much of the complex dynamics of the cell, as discussed in Chapter 1 and extrapolated

in Chapter 3. These models maintain the simplest form of cell dynamics, while

allowing an easy implementation for designers. One such method is called "coulomb

counting" [40] [43], and is presented as a juxtaposition to the BMS implementation

discussed in detail throughout this thesis. The notation of a battery model will be

established more significantly in Chapter 3, but the elementary form is presented

herein, hopefully without the loss of clarity. As discussed in Section 2.1, the SoC is

a metric describing the local utilization. As such, this is a ratio of the concentration

in a solid particle, as a function of its location in space, 𝑥; the point of interest on

the radius of the particle, 𝑟; the time of interest, 𝑡; and the maximum concentration

possible in that sphere, 𝑐𝑠,𝑚𝑎𝑥. Of course, this means there are infinite SoCs across

the cell, at every conceivable point within the sphere.

To aggregate this data into a measurable value, a bulk utilization is defined [11],

as in Equation (2.1),

𝑆𝑂𝐶±(𝑡) ,
3

𝐿±
(︀
𝑅±
𝑝

)︀3 ∫︁ 𝐿±

0±

∫︁ 𝑅±
𝑝

0

𝑟2
𝑐±𝑠 (𝑥, 𝑟, 𝑡)

𝑐±𝑠,𝑚𝑎𝑥
𝑑𝑟𝑑𝑥 (2.1)

where 𝑆𝑂𝐶±(𝑡) denotes the SoC of the anode (−) or cathode (+), 𝐿± denotes the

length of the volume of the electrode, as shown in Figure 1-2, 𝑅±
𝑝 is the full radius

of the particle, 𝑟 is the specific position on the radius, 𝑐±𝑠 (𝑥, 𝑟, 𝑡) is the solid concen-

tration and 𝑐±𝑠,𝑚𝑎𝑥 is the theoretical capacity of the cell. In this form, SoC is still not

directly measurable, however the form can be altered to be estimable by an accurate
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measurement of current [43], as shown in Equation (2.2).

𝑆𝑂𝐶±(𝑡) = 𝑆𝑂𝐶±(𝑡0)∓
∫︁ 𝑡

𝑡0

𝐼(𝜏)

𝑐𝑎𝑝±
𝑑𝜏 (2.2)

𝑆𝑂𝐶±(𝑡0) is the initial value of the SoC, while 𝐼(𝜏) is the current profile over time,

and 𝑐𝑎𝑝± is the nominal capacity of the battery during the experiment. By measur-

ing the open-circuit potential of the cell, one can determine the initial SoC, 𝑆𝑂𝐶(𝑡0),

and with accurate current measurements, determine the bulk SoC of a cell. However,

the nominal capacity is a measurement of the degraded capacity from the theoretical

capacity. This can be determined by charging and discharging the cell between preset

voltages, and measuring the amount of time until it reaches those points. This is in-

convenient to do regularly, but can be achieved. Subsequently, since the measurement

is an integration of the current, errors tend to accumulate based on minimal mea-

surement noise, leading to inaccurate estimates. Subsequently, the nominal capacity

is used as a definition of SoH, such as shown in Equation (2.3) [40],

𝑆𝑂𝐻± ,
𝑐𝑎𝑝±

𝑐±𝑠,𝑚𝑎𝑥
× 100% (2.3)

where 𝑆𝑂𝐻± is the SoH of the anode or cathode. Using Equations (2.2) and (2.3), one

can generate a rudimentary BMS, but the sensitivity to highly accurate current mea-

surements and offline data does not engender confidence for high fidelity estimates.

Furthermore, a bulk SoC ignores the potential for concentration gradients, which are

possible with severe current profiles, and pose an equal threat of over-charging or dis-

charging in a localized area of the cell. Instead, a more advanced means of estimation

is necessary to ensure a more refined approach.

2.3 Advanced Battery Management Systems

The primary difference between an advanced battery management system (ABMS)

and the conventional implementation of a BMS is the inclusion of an electrochemical

model [11], as shown in Figure 2-2. Instead of relying on high-level abstractions, the
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Figure 2-2: A block diagram of an advanced battery management system in operation
with cell measurements and inclusive of an electrochemical model.

states of the battery are directly tracked using observers to inform more nuanced

control approaches. Often, a standard BMS relies on set voltage and current limits,

such that,

𝑉𝑚𝑖𝑛 ≤𝑉 (𝑡) ≤ 𝑉𝑚𝑎𝑥

𝐼𝑚𝑖𝑛 ≤𝐼(𝑡) ≤ 𝐼𝑚𝑎𝑥

(2.4)

where 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 represent the low and high voltage limits, respectively; 𝐼𝑚𝑖𝑛

and 𝐼𝑚𝑎𝑥 represent the discharging and charging current limits, 𝑉 (𝑡) is the measured

voltage of the cell, and 𝐼(𝑡) is the measured current through the cell. These bounds

are often based on empirically defined safety limits, but have the effect of limiting the

capacity, as shown in Figure 2-3, or, after years of parameter degradation, allowing

operation outside of a truly safe range, as shown in the evolution of Figure 2-3 by

the hypothetical representation in Figure 2-4. Understanding the true capacity of a

battery at any time, allows for more properly sized cells for a given purpose, reducing

weight and cost, while also having stronger guarantees on safety.

Beyond ensuring that the safe operating limits are known accurately, as deter-

mined by the SoC in conjunction with the SoH, it also possible to limit the type

of operating conditions that encourage the degradation of parameters leading to the
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Implemented Operational Limits

Safe Operating Limits

𝑉𝑚𝑖𝑛 𝑉𝑚𝑎𝑥 𝑉 (𝑡)

𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥

𝐼(𝑡)

Figure 2-3: Depiction of the capacity limits imposed by constant bounds of volt-
age and current operation. The white box represents the standard BMS, while the
cross-hatch shows a hypothetical safe operating range outside of the conventional
implementation.

depiction shown in Figure 2-4. A more rigorous explanation of the notation is pre-

sented in Chapter 3, but the underlying concept is that new features of the cell can

be considered with the use of an ABMS. One such occurrence is lithium plating of

the electrode on the surface of the solid particle [3], as caused by an overpotential

side reaction. The overpotential is defined as,

𝜂𝑠𝑟(𝑥, 𝑡) = 𝜑𝑠(𝑥, 𝑡)− 𝜑𝑒(𝑥, 𝑡)− 𝒰(𝑥, 𝑡)−𝑅𝑓 (𝑥, 𝑡)𝑗(𝑥, 𝑡) (2.5)

where 𝜂𝑠𝑟(𝑥, 𝑡) is the overpotential of a side reaction of the cell, 𝜑𝑠(𝑥, 𝑡) is the solid

potential of the cell, 𝜑𝑒(𝑥, 𝑡) is the electrolyte potential of the cell, 𝒰(𝑥, 𝑡) is the open-

circuit potential of the cell, 𝑅𝑓 (𝑥, 𝑡) is the film resistance and 𝑗(𝑥, 𝑡) is the molar flux.

For simplicity purposes, we can eliminate 𝑅𝑓 (𝑥, 𝑡)𝑗(𝑥, 𝑡), as the molar flux is much

less than zero, or |𝑗(𝑥, 𝑡)| ≈ 0. Additionally, for side reactions, the overpotential

is also zero, 𝒰(𝑥, 𝑡) = 0, and therefore the overpotential for this particular case is

considered as shown in Equation (2.6).

𝜂𝑠𝑟(𝑥, 𝑡) = 𝜑𝑠(𝑥, 𝑡)− 𝜑𝑒(𝑥, 𝑡) (2.6)

29



Implemented Operational Limits

𝑉𝑚𝑖𝑛 𝑉𝑚𝑎𝑥 𝑉 (𝑡)

𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥

𝐼(𝑡)

Figure 2-4: The time evolution of Figure 2-3 over several years, where parameter
degradation has limited the safe operational range to less than that imposed by the
constant limits. Again, the white box represents the standard BMS, while the cross-
hatch shows the hypothetical safe operating range.

Using this definition of the side reaction overpotential, a simple control constraint

available only to an ABMS can be defined as shown in Equation (2.7).

𝜂𝑠𝑟(𝑥, 𝑡) > 0 (2.7)

This definition applies to all points in the cell, and only by identifying the states

across the cell, instead of a bulk SoC, is this control scheme possible, thus reducing

the fatigue stress of a cell. Therefore, as discussed as the fundamental distinction

between a BMS and an ABMS, a strong, control-oriented model must be developed as

the foundation for any parameter or state identification. Modeling is a well-discussed

element of the literature regarding Li-ion batteries, and is covered in Chapter 3.
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Chapter 3

Battery Modeling

At the heart of advanced monitoring systems is an implementation of a high fidelity

battery model to match the dynamics of the measured inputs and outputs. By using

an effective model, the management of the cell has a higher fidelity with the internal

states of the actual cell. The difficulty is in finding the balance between a model

with a few number of states, allowing for tractable observer construction, while also

maintaining the appropriate degrees of freedom to allow for accurate simulation. A

wide swath of literature is focused on adjusting this problem with myriad strategies.

This chapter will address the state of various models in literature, with a focus on

the progress made by this research. Section 3.1 summarizes the structure of a battery,

as discussed previously in Section 1.1. Section 3.2 discuss non-physical approxima-

tions, such that the dynamics are established with analogous systems, as opposed

to the underlying electrochemical properties. Section 3.3 discusses electrochemical

models, with a specific focus on the Doyle-Fuller-Newman model. This section also

focuses on the model-order reduction techniques, with a highlight on the solution to

the Single Particle Model. Section 3.4 discusses the culmination in work by the author

and a previous graduate student in developing a battery model for control purposes,

while Section 3.5 discusses an extension of this model to fix some of its limiting issues

in the observer models. Finally, Section 3.6 shows validation efforts for the models,

and draws comparisons between them, as well as distinctions.
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3.1 Battery Structure

The underlying principles of the Li-ion battery cell that are the focus of a given

model is the available energy, as a function of lithium concentrations, for discharge

or charge. The diffusion principles are assumed to be the same for either charging

or discharging, with only a change in sign of the input current. The role of a bat-

tery model is to replicate these diffusion principles as closely as possible to a real

cell, while also maintaining design constraints regarding computational complexity.

Therefore, the structure is separated into three distinct volumes, that of the anode, a

negatively charged volume; the cathode, a positively charged volume; and the separa-

tor, an electrically insulating volume that allows the passage of ions, but not charge.

Through this structure, the passage and concentrations of ions is enabled by the trans-

fer mechanism of an electrolyte, which define the state metrics described in Section

2.1. Frequently, the dynamics are normalized against a singular, dominant direction,

called the x-direction, for purposes of simplification. This then allows the designer to

focus solely on the bulk reactions in this direction, instead of relying on a 3D model

beholden to precise geometric measurements of vastly varying scales. However, the

underlying desire of these models is still to replicate voltage as a function of current,

or vice-versa, which allows for models that are completely agnostic of electrochemical

diffusion principles.

3.2 Analogous System Approximations

In the interest of simplifying the dynamics of a battery cell, approximations have

been developed that abstract the electrochemical diffusion discussed in Section 3.3.

The advantage of these models is a clear grasp on the time-dependent dynamics

of the model, while having sufficient replication of the battery output. Generally

speaking, there are limitations to these models at higher discharge rates, but can

be suitable for the complex simulation of electrical grids and large battery packs.

Section 3.2.1 discusses the equivalent circuit model, an approximation based on a
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circuit representation of the cell that uses various parallel and series impedance to

reproduce the dynamics. Section 3.2.2 discusses the kinetic battery model, which

uses an analogous system of two volumes, one that represents the energy available for

use, and the other representing the difference in total available charge. These types

of models are frequently used, but the presentation of them is not exhaustive of the

variety of analogous system approximations.

3.2.1 Equivalent Circuit Model

Equivalent circuit models are prevalent in literature [20], with myriad approaches.

The premise is to devise a battery model that replicates the performance of a cell using

common circuit components. The advantage in this approach is elements that are easy

to model, extraordinarily well understood, and subsequently easy to parameterize for

empirical fitting. This section will cover a simple approach to the modeling strategy

[58], and also examine an extension of that approach [21].

An early attempt at the equivalent circuit model [59] is that of the first order RC

circuit, as shown in Figure 3-1. The voltage of the cell is denoted as 𝑉𝑐, and is a

function of an open-circuit potential, 𝑉0, and an overpotential due to the impedance

of internal resistances. The mathematical representation begins with Kirchoff’s law,

−+

𝑉𝑐

𝐶 = 𝜏
𝑅2

𝑖1𝑣1

𝑅2

𝑖2

𝑅1
𝐼

𝑉0

Figure 3-1: Equivalent circuit model for empirically fitted parameters to simulation
data [59].

as a sum of currents such that,

𝐼 = 𝑖1 + 𝑖2 (3.1)
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Subsequently a definition of each of the currents is established,

𝑖1 = 𝐶
𝑑𝑣1
𝑑𝑡

𝑖2 =
𝑣1
𝑅2

(3.2)

These are then substituted back into Equation (3.1), to yield,

𝐼 =
𝑣1
𝑅2

+ 𝐶
𝑑𝑣1
𝑑𝑡

(3.3)

with an equivalent representation in the Laplace domain,

𝐼(𝑠)
1
𝑅2

+ 𝐶𝑠
= 𝑉1(𝑠) (3.4)

To solve for the overpotential, 𝑉𝑐 − 𝑉0, the final relationship in the Laplace domain

is established, substituted with Equation (3.4),

𝑉𝑐(𝑠)− 𝑉0 −
𝐼(𝑠)

1
𝑅2

+ 𝐶𝑠
= 𝐼(𝑠)𝑅1

𝑉𝑐(𝑠)− 𝑉0
𝐼(𝑠)

=
𝑅1𝑅2𝐶𝑠+𝑅1 +𝑅2

𝑅2𝐶𝑠+ 1

(3.5)

Then, by fitting the parameters 𝑉0, 𝑅1, 𝑅2 and 𝐶 to empirical data, the model is

representative of the dynamics of a battery cell. It should be noted that either a

voltage profile, 𝑉𝑐, or a current profile can be used as an input for this model.

The simple equivalent circuit shown in Figure 3-1 was extended, as shown in

Figure 3-2 [21]. Each additional filter, for 𝑖 = [1 . . . 𝑛], has an associated voltage drop

across the elements, 𝑉𝑖 = 𝑣𝑖 − 𝑣𝑖+1, defined by Equation (3.6).

𝑑𝑉𝑖
𝑑𝑡

=
1

𝑅𝑖𝐶𝑖
𝑉𝑖 +

1

𝐶𝑖
𝐼 (3.6)

A hysteresis factor, 𝑉ℎ, is defined as,

𝑑𝑉ℎ
𝑑𝑡

= Γ(𝑇 )|𝐼|(𝐻(𝑧, sgn(�̇�), 𝑇 )− 𝑉ℎ) (3.7)
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−+

𝑉𝑐

𝐶𝑛 = 𝜏
𝑅2

𝑖𝑛,𝑐𝑣𝑛

𝑅𝑛

𝑖𝑛,𝑟

//

𝐶1 =
𝜏
𝑅2

𝑖1,𝑐𝑣1

𝑅1

𝑖1,𝑟
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Figure 3-2: Extended equivalent circuit model [21].

where Γ(𝑇 ) is a hysteresis coefficient as a function of temperature, 𝑇 ; and 𝐻 is a

maximum hysteresis value as a function of the SoC, shown as 𝑧 in this notation,

and the temperature, 𝑇 . This hysteresis value is used to correct for the difference in

charging and discharging dynamics. Subsequently, the full cell voltage can be defined

as shown in Equation (3.8).

𝑉𝑐 = 𝑉0 −𝑅0𝐼 −
𝑛∑︁
𝑖=1

𝑉𝑖 − 𝑉ℎ (3.8)

These models have been proposed with corrections made for temperature effects and

hysteresis. The downside is an inability to estimate parameters, as the model is

dependent on constant recalibration, and abstracts the value of SoC, relying on the

coulomb-counting discussed in Section 2.2. A model that attempts to correct this

latter shortcoming, but still maintains the benefits of a highly simplified structure, is

the Kinetic Battery Model.

3.2.2 Kinetic Battery Model

The Kinetic Battery model (KiBaM) has been present for several decades, and was

originally designed for use with lead-acid batteries [30]. The concept has recently been

applied to Li-ion batteries [46], and is used in modeling microgrid control algorithms

[60]. The advantage of the KiBaM is its analytically simple derivation, and use of
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an analogous mechanical system formulation. An image of this formulation is shown

in Figure 3-3. The qualitative notion of the model is two reservoirs that dictate the

𝑞𝑚

1− 𝐶 𝐶

𝑞2

𝑞1
𝑘′ 𝑅0

𝐼

Current Regulator

Figure 3-3: A graphical depiction of the kinetic battery model, as presented in liter-
ature [30].

charge of the system. Tank 1 has a width, 𝐶, that is available for use, while tank 2

has the unity difference width, 1 − 𝐶. Their heights are denoted with 𝑞1 and 𝑞2 for

tank 1 and tank 2, respectively, and their maximum height is bound by 𝑞𝑚. There is

an impedance between tanks, 𝑘′, as well as before discharge, 𝑅0. The dynamics are

governed by two expressions, shown in Equation (3.9).

𝑑𝑞1
𝑑𝑡

= −𝐼 − 𝑘′(ℎ1 − ℎ2)

𝑑𝑞2
𝑑𝑡

= 𝑘′(ℎ1 − ℎ2)
(3.9)

Where the heights of the tanks, ℎ1 and ℎ2, are defined as,

ℎ1 =
𝑞1
𝐶

ℎ2 =
𝑞2

1− 𝐶

(3.10)

Subsequently, the impedance, 𝑘, is normalized for mathematical convenience,

𝑘 =
𝑘′

𝐶(1− 𝐶)
(3.11)
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Substituting these expressions into Equation (3.9) yields,

𝑑𝑞1
𝑑𝑡

= −𝐼 − 𝑘(1− 𝐶)𝑞 − 1 + 𝑘𝐶𝑞2

𝑑𝑞2
𝑑𝑡

= 𝑘(1− 𝐶)𝑞1 − 𝑘𝐶𝑞2
(3.12)

For each instance of the model, the current is calculated as a 𝐼 = 𝑃𝑛𝑒𝑒𝑑/𝑉𝑠𝑦𝑠, where

the battery voltage is assumed to be at the system level.

This particular model formulation is well suited for applications where the voltage

is well determined, such as that from power generation units in a microgrid. It does

not, however, allow for both SoC estimation and SoH estimation, and needs, as the

ECM models do, to be fit empirically to models first. The thematic shortcomings of

these models pertain to a lack of physical parameters that allow for simultaneous SoC

and SoH estimation. To correct these problems, many instances in literature have

sought to better demonstrate battery dynamics with electrochemical models. The

extent of these models, as well as methods for model order reduction, are discussed

in Section 3.3.

3.3 Electrochemical Models

The basic dynamics captured by electrochemical lithium-ion models can be consid-

ered as the reversible transport of lithium ions from a negatively charged volume

(anode) to a positively charged volume (cathode). The transport mechanism is an

electrolyte, that passes through an electrically insulating porous separator, which

allows the passage of ions between volumes, but not an exchange of charge. The

difference in potential of these volumes is the driving electrical force in the implicit

circuit, while the diffusion of the lithium particles can most simply be considered as

a function of the resulting current. The resulting physical ports of such a system are

voltage, current and temperature. A widely used model in the field of ABMS research

is the Doyle-Fuller-Newman model.
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3.3.1 Doyle-Fuller-Newman Model

The Doyle-Fuller-Newman (DFN) analytical model [15] [57] combines a series of PDE

equations with an algebraic constraint due to the reaction kinetics. Also referred

to as the pseudo two dimensional (P2D) model, the DFN model considers reaction

dynamics in the Li-ion cell along the 𝑥-axis, and a radial dimension, 𝑟, along which the

electrode volumes are discretized into spherical solids, such as that shown in Figure

1-2. The dynamics of the lithium concentration in the solid electrode along the radius

of the pseudo-sphere, 𝑐±𝑠 (𝑥, 𝑟, 𝑡), where the superscript ± denotes the specific volume

in the anode and cathode, respectively, can be defined as,

𝜕𝑐±𝑠 (𝑥, 𝑟, 𝑡)

𝜕𝑡
=

1

𝑟2
𝜕

𝜕𝑟

(︂
𝐷±
𝑠 𝑟

2𝜕𝑐
±
𝑠 (𝑥, 𝑟, 𝑡)

𝜕𝑟

)︂
(3.13)

where 𝐷±
𝑠 denotes the solid diffusion coefficient. The boundary conditions for this

expression are shown below as,

𝜕𝑐±𝑠 (𝑥, 𝑟, 𝑡)

𝜕𝑟

⃒⃒⃒⃒
𝑟=0

= 0

𝜕𝑐±𝑠 (𝑥, 𝑟, 𝑡)

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑅±

𝑝

= −𝑗(𝑥, 𝑡)
𝐷±
𝑠

(3.14)

Similarly, the resulting dynamics in electrolyte concentration, 𝑐𝑒(𝑥, 𝑡), can be de-

fined by,

𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥

(︂(︂
𝐷𝑒(𝑥, 𝑡)

𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑥

)︂
+

𝑡0𝑎
𝐹𝜖𝑒

𝑖𝑒(𝑥, 𝑡)

)︂
(3.15)

where 𝐷𝑒(𝑥, 𝑡) denotes the electrolyte diffusion coefficient as a function of electrolyte

concentration; 𝐹 , the Faraday constant; 𝜖𝑒, the electrolyte volume fraction; 𝑡0𝑎, the

transference number of the anions; and 𝑖𝑒(𝑥, 𝑡), the electrolyte current, as defined by,

𝜕𝑖𝑒(𝑥, 𝑡)

𝜕𝑥
= 𝑎±𝑠 𝐹𝑗(𝑥, 𝑡). (3.16)

In Equation (3.16), 𝑎±𝑠 , denotes the specific electrode interfacial area. The molar flux,
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𝑗(𝑥, 𝑡), is given by an expression known as the Butler-Volmer reaction kinetics [39],

which relates the molar flux to the overpotential of the cell,

𝑗(𝑥, 𝑡) =
𝑖0(𝑥, 𝑡)

𝐹

(︂
exp

(︂
𝛼𝑎𝐹

𝑅𝑇
𝜂±(𝑥, 𝑡)

)︂
− exp

(︂
−𝛼𝑐𝐹
𝑅𝑇

𝜂±(𝑥, 𝑡)

)︂)︂
(3.17)

where 𝛼𝑎/𝑐 is the transfer coefficient for anions/cations. If the transfer coefficient is

equal to 0.5 for both cations and anions, a common assumption, the exchange current

density, 𝑖0(𝑥, 𝑡), is defined by,

𝑖0(𝑥, 𝑡) = 𝑘𝑒𝑓𝑓

√︁
𝑐±𝑠𝑠(𝑥, 𝑡)𝑐𝑒(𝑥, 𝑡)

(︀
𝑐±𝑠,𝑚𝑎𝑥 − 𝑐±𝑠𝑠(𝑥, 𝑡)

)︀
(3.18)

where 𝑘𝑒𝑓𝑓 is the effective reaction constant, 𝑐±𝑠𝑠 is the solid concentration at the

surface of the pseudo-sphere, or 𝑐±𝑠𝑠 = 𝑐±𝑠 (𝑥,𝑅𝑝, 𝑡), where 𝑅𝑝 is the full radius of the

pseudo-sphere, and 𝑐±𝑠,𝑚𝑎𝑥 is the maximum concentration of the solid electrode. The

overpotential, 𝜂±(𝑥, 𝑡), is given by,

𝜂±(𝑥, 𝑡) =𝜑±
𝑠 (𝑥, 𝑡)− 𝜑𝑒(𝑥, 𝑡)

− 𝒰±(𝑐±𝑠𝑠)− 𝐹𝑅±
𝑓 𝑗(𝑥, 𝑡)

(3.19)

which depends on the volume’s open circuit potential (OCP), 𝒰±(𝑐±𝑠𝑠), and the inter-

phase resistivity, 𝑅±
𝑓 , which is an internal resistance that causes a voltage drop within

the cell. For most new cells, 𝑅±
𝑓 is negligible. 𝒰±(𝑐±𝑠𝑠), is an empirically defined value

of the potential as a function of the surface concentration of the solid [18].

Additionally, the variation of the solid potential, 𝜑±
𝑠 (𝑥, 𝑡), is defined as,

𝜕𝜑±
𝑠 (𝑥, 𝑡)

𝜕𝑥
=
𝑖𝑒(𝑥, 𝑡)− 𝐼(𝑡)

𝜎± (3.20)

where 𝐼(𝑡) is the input current and 𝜎± is the effective conductivity of the electrode.

Similarly, the spatiotemporal dynamics of the electrolyte potential, 𝜑±
𝑒 (𝑥, 𝑡), can be
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expressed as,

𝜕𝜑±
𝑒 (𝑥, 𝑡)

𝜕𝑥
= −𝑖𝑒(𝑥, 𝑡)

𝜅(𝑥, 𝑡)
+

2𝑅𝑇 (1− 𝑡0𝑐)
𝐹

(︂
1 +

𝑑 ln 𝑓𝑐/𝑎(𝑥, 𝑡)

𝑑 ln 𝑐𝑒(𝑥, 𝑡)

)︂(︂
𝜕 ln 𝑐𝑒(𝑥, 𝑡)

𝜕𝑥

)︂
(3.21)

where 𝑅 is the ideal gas constant, 𝑇 is the temperature of the cell, and 𝑡0𝑐 is the

transference number of cations. Both the ionic conductivity, 𝜅(𝑥, 𝑡), and the mean

molar activity coefficient, 𝑓𝑐/𝑎, are functions of electrolyte concentration.

Finally, the cell voltage, 𝑉 (𝑡) can be calculated by finding the difference of the

solid potentials at the current collectors, specifically,

𝑉 (𝑡) = 𝜑+
𝑠 (0

+, 𝑡)− 𝜑−
𝑠 (0

−, 𝑡) (3.22)

In summary, the isothermal DFN model is fully described by Equations (3.13) - (3.22).

Other literature provides greater details on boundary conditions, thermal behavior,

chemical dynamics and further explanation of the terms and physical nature of the

variables [11] [15].

3.3.2 Model Order Reduction

Whether the model in question is the DFN, single particle model (SPM), or extended

SPM (ESPM), the use of a PDE often introduces significant complexities for a number

of system specific goals, such as estimation, prediction, or control. For this purpose,

a reduced-order model, consisting of finite-dimensional rational transfer functions, is

often useful. To this end, a number of model-order reduction (MOR) techniques have

been reported in literature (see references in the survey paper, [16]). These methods

are briefly presented below, with a focus on the derivation of an ODE, which results

in a significant reduction in the simulation complexity.

Padé Approximation [31]

As the name suggests, this approach consists of deriving the underlying transfer func-

tion between the molar flux of lithium ions, often as a linear function of input cur-
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rent, and the solid electrode, starting from a diffusion PDE, which typically consists

of time-delays, and subsequently applying Padé approximations. Denoting a typical

MOR transfer function as,

�̃�(𝑠) =
𝑏0 + 𝑏1𝑠+ 𝑏2𝑠

2 + ...+ 𝑏𝑞𝑠
𝑞

𝑠(𝑎0 + 𝑎1𝑠+ 𝑎2𝑠2 + ...+ 𝑎𝑞𝑠𝑞)
(3.23)

the order 𝑞 is determined so that the frequency response of �̃�(𝑠) is matched to the total

system dynamics, which manifest as a transcendental transfer function corresponding

to the PDE in Equation (3.13), around specific operational frequencies, such that 𝑞

is an arbitrarily low order linear system. After initial model order reduction, these

techniques have a numerical complexity of 𝑂(𝑞2).

Balanced Truncation [33]

In the case of balanced truncation, starting from Equation (3.13), a full order finite-

difference model can be constructed for each electrode, and represented in standard

state-space representation,

�̇� = 𝐴𝑥+𝐵𝑢

𝑦 = 𝐶𝑥+𝐷𝑢
(3.24)

for 𝑥 ∈ R𝑁×1. A nonsingular transformation, 𝑇 , can be found, such that 𝑇 is chosen

to ensure the controllability and observability grammians are equal, leading to,

˙̃𝑥 = 𝐴�̃�+ �̃�𝑢

𝑦 = 𝐶�̃�+𝐷𝑢
(3.25)

where �̃� = 𝑇𝑥, such that 𝐴 = 𝑇𝐴𝑇−1, �̃� = 𝑇𝐵, and 𝐶 = 𝐶𝑇−1. The diagonal of

the resulting grammians from Equation (3.25) can be sorted in descending order of

observable (or controllable) states to reduce the dimension of the system matrix to

𝑞, such that 𝑞 << 𝑁 . Again, the subsequent complexity for dynamical simulation is

𝑂(𝑞2). It should be noted that with this model order reduction, the parameters, 𝐴, �̃�
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and 𝐶, no longer retain physical value, and additional matrix multiplications would

need to be conducted to determine the original parameters, 𝐴, 𝐵 and 𝐶, increasing

the order to 𝑂(𝑞2 +𝑁2).

Proper Orthogonal Decomposition [7]

To perform proper orthogonal decomposition, dominant singular values of simulation

data are found to construct a reduced order model projected on the subspace, Φ𝑞 ∈

R𝑞×𝑞, in the form,

˙̂𝑥 = Φ⊤
𝑞 𝐴Φ𝑞�̂�+ Φ⊤

𝑞 𝐵𝑢

𝑦 = 𝐶Φ𝑞�̂�
(3.26)

for �̂� ∈ R𝑞×1, where 𝑞 is chosen as a tenable number of states for accuracy and

numerical complexity, again resulting in 𝑂(𝑞2) dynamical calculations. It should be

noted that here, too, the reduced states, �̂�, and system matrix, 𝐴 = Φ⊤
𝑞 𝐴Φ𝑞, have

lost physical meaning through the order reduction, but replicate the results of the

system well.

Orthogonal Collocation of Finite Elements [8]

Yet another model order reduction technique proposed in literature is through a

finite element method, solved with orthogonal collocation at points optimally chosen

within the solid to reduce the number of equations [8]. The locations of these points

are defined by the Jacobi polynomial, 𝑃𝑁 , shown in Equation (3.27), of an order equal

to the number of desired collcation points, given by,

(1− 𝑥)𝑎𝑥𝑏𝑃 (𝑎,𝑏)
𝑁 =

(−1)𝑁𝐺(𝑏+ 1)

𝐺(𝑁 + 𝑏+ 1)

𝑑𝑁

𝑑𝑥𝑁
(︀
(1− 𝑥)𝑁+𝑎𝑥𝑁+𝑏

)︀
(3.27)

where 𝐺(𝑠) = 𝑐𝑠(𝑠)
𝑗(𝑠)

is the transfer function of the solid concentration, and 𝑎 and 𝑏

represent a nonlinear distribution of points along the solid, 𝑥 ∈
[︁

0, 1
]︁
, such that

a higher 𝑏 will clump collocation points to the surface of the particle, while a higher
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𝑎 will concentrate points at the center of the solid. In the worst case, this solution

requires 𝑂(𝑁2) calculations.

It is important to note that all of the above MOR techniques, listed in a) through

d), are applied to the solution of the PDE within the solid electrode, and do not focus

on the electrolyte concentration, 𝑐𝑒(𝑥, 𝑡), or its ODE counterpart.

PDE Observer Approach

Significant effort in literature [36] [55] has been focused on incorporating the observer

structure into the PDE formulation of the DFN model. One approach is to use

the SPM PDE formulation, and in the observer reference model include additional

boundary state error injection [36], such that,

𝜕𝑐(𝑟, 𝑡)

𝜕𝑡
= 𝜖

𝜕2𝑐(𝑟, 𝑡)

𝜕2𝑟
+ 𝑝1(𝑟)𝑐(1, 𝑡)

𝑐(0, 𝑡) = 0

𝜕𝑐(1, 𝑡)

𝜕𝑟
− 𝑐(1, 𝑡) = −𝑞𝜌𝐼(𝑡) + 𝑝10(𝑡)𝑐(1, 𝑡)

(3.28)

where 𝑝1(𝑡) and 𝑝10 are the injection gains, and the observer error is defined as

𝑐(𝑟, 𝑡) = 𝑐(𝑟, 𝑡)− 𝑐(𝑟, 𝑡). While producing consistent PDE observer results, as can be

proven by subtracting the observer structure from the plant structure in a stability

analysis [36], this approach is still limited by the dynamics of the SPM, which ignore

the effects of the electrolyte. This is referred to as a back-stepping observer, and has

been shown to yield successful results with respect to state estimation in the solid

electrode [36] [55]. In the approach proposed in this paper, based on the ANCF [50],

variations in the solid electrode and electrolyte are addressed by the method outlined

below.

3.3.3 Single Particle Model

In the interest of simplifying the defining equations of the DFN model, expressed

in Equations (3.13) - (3.22), further assumptions have been proposed [41] [48] [47],
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arriving at what is known as the Single Particle Model (SPM).
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Figure 3-4: Coarse discretization scheme of the single particle model.

In the formulation of the SPM, the solid electrodes are discretized at the lowest

resolution possible, specifically one pseudo-sphere per electrode. Furthermore, in the

simplest form of the SPM, any variation in the electrolyte concentration is ignored,

as seen in Figure 3-4, which disregards the dynamics of Equation (3.15) as well as

Equation (3.21). This manifests as,

𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑡
= 0

𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑥
= 0

(3.29)

which allows for an analytical solution to the model. However, an electrolyte concen-

tration is still defined, such that 𝑐𝑒(𝑥, 𝑡) = 𝑐𝑒,0. It can be shown that Equation (3.16)

can be solved with boundary conditions to produce a definition of the molar flux as,

𝑗±(𝑡) = ∓ 𝐼(𝑡)

𝐹𝑎±𝐿± (3.30)

Using this definition, and applying it to the Butler-Volmer Kinetics described in

Equation (3.17), one can calculate an explicit definition of the solid potential at the
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current collectors,

𝜑±
𝑠 (𝑡) =

2𝑅𝑇

𝐹
sinh−1

⎛⎝ 𝐼(𝑡)

2𝑎±𝐿±𝑘𝑒𝑓𝑓

√︁
𝑐𝑒,0𝑐±𝑠𝑠(𝑡)

(︀
𝑐±𝑠,𝑚𝑎𝑥 − 𝑐±𝑠𝑠(𝑡)

)︀
⎞⎠

+ 𝒰±(𝑐±𝑠𝑠(𝑡)) +
𝑅±
𝑓

𝑎±𝐿± 𝐼(𝑡)

(3.31)

Finally, the voltage can be defined as,

𝑉 (𝑡) = 𝜑+
𝑠 (𝑡)− 𝜑−

𝑠 (𝑡) (3.32)

where the two solid potentials are taken as the voltages at the current collectors. The

definition of the solid dynamics remains mostly unchanged, except for the removal

of the 𝑥 term in favor of a volume distinction, namely ±, as a convention previously

introduced. This is shown in Equation (3.33).

𝜕𝑐±𝑠 (𝑟, 𝑡)

𝜕𝑡
=

1

𝑟2
𝜕

𝜕𝑟

(︂
𝐷±
𝑠 𝑟

2𝜕𝑐
±
𝑠 (𝑟, 𝑡)

𝜕𝑟

)︂
(3.33)

In this equation it is clear that some type of linearization for purposes of turning the

PDE into an ODE, or an explicit PDE solution, is needed. This is the focus of many

of the model order reduction techniques discussed in Section 3.3. The structure of

the boundary conditions of this equation remain, but are adjusted using the explicit

definition of the molar flux, 𝑗±(𝑡), shown in Equation (3.30).

𝜕𝑐±𝑠 (𝑟, 𝑡)

𝜕𝑟

⃒⃒⃒⃒
𝑟=0

= 0

𝜕𝑐±𝑠 (𝑟, 𝑡)

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑅±

𝑝

= ± 𝐼(𝑡)

𝐷±
𝑠 𝐹𝑎

±𝐿±

(3.34)

The initial condition is defined as,

𝑐±𝑠 (𝑟, 0) = 𝑐±𝑠,0(𝑟) (3.35)
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while the definition of surface concentration remains unchanged,

𝑐±𝑠𝑠(𝑡) = 𝑐±𝑠
(︀
𝑅±
𝑝 , 𝑡
)︀

(3.36)

These equations define the simplified structure of the SPM, based on the assumptions

of negligible concentration variation in the electrolyte.

Even though these assumptions help in reducing the computational burden of the

model, they result in a degraded fidelity at higher currents. Despite the latter, it

has been shown that the SPM is highly useful in developing control schemes [11]

[35] [52] [12] and estimation methods [23]. With the intent of better replicating the

effects of high discharge cycles, the SPM has more recently been extended to include

electrolyte variation [44] [19] (ESPM). This implies that Equations (3.15) and (3.21)

can no longer be neglected, which contributes additional complexity, but more fidelity

at higher currents.

3.4 ANCF Model

In this section, a reduced-order model of the Li-ion cell is derived using the absolute

nodal coordinate formulation (ANCF). Originally designed to replicate the nonlinear

effects of highly flexible beams [50] [61], the same principles allow the proposed model

to capture the significant variation of the electrolyte concentration, 𝑐𝑒(𝑥, 𝑡); molar

flux, 𝑗(𝑥, 𝑡); and volume projections of solid electrode concentrations, 𝑐𝑠(𝑥, 𝑡) and

𝑞(𝑥, 𝑡). The approach using the latter three states is based on a third order polynomial

description of the spatial variations of the solid concentration, which allows for the

reduction of the problem from a PDE to that of an ODE of the volume averaged

projection of the concentration [54].

3.4.1 Basis Functions

In order to introduce the underlying spatial approximation, the model construction

begins using a pseudostate variable, 𝜃(𝑥, 𝑡), which can be conceptualized as a surro-

46



gate variable for various electrochemical states, including electrolyte concentration,

𝑐𝑒(𝑥, 𝑡), molar flux, 𝑗(𝑥, 𝑡), average solid concentration within the pseudo-sphere,

𝑐𝑠(𝑥, 𝑡), and a surface concentration difference, 𝑞(𝑥, 𝑡). The solid electrodes and sep-

arator are discretized into 𝑁 nodes, which, in turn, define 𝑁 − 1 elements along the

dominant spatial dimension, 𝑥. An element length is defined as,

𝑙′ =
𝐿

𝑁 − 1
(3.37)

where 𝐿 is the full compartment length of the anode, cathode as well as the separator.

For each element, 𝑖, a local coordinate, 𝑠𝑖(𝑥, 𝑖), can be defined such that,

𝑠𝑖(𝑥, 𝑖) =
𝑥− (𝑖− 1)𝑙′

𝑙′
(3.38)

for every element, 𝑖 ∈
[︁

1 · · · N - 1
]︁
, in a volume. An indexing function is also

defined,

𝜒𝑖(𝑥) =

⎧⎨⎩ 1 if x ∈
[︁

il’, (i+1)l’
]︁
,

0 else.
(3.39)

A basis function in the form of a cubic polynomial is chosen, as its four associated

degrees are sufficient to characterize the spatial variations of the problem under con-

sideration. This polynomial is chosen to be a function of the absolute nodal dimension,

𝑠𝑖, and is given by,

𝜃𝑖(𝑠𝑖, 𝑡) = 𝛼𝑖(𝑡) + 𝛽𝑖(𝑡)𝑠𝑖 + 𝛾𝑖(𝑡)𝑠
2
𝑖 + 𝛿𝑖(𝑡)𝑠

3
𝑖 (3.40)

The pseudostate variable, 𝜃(𝑥, 𝑡), is then approximated over a compartment using the

polynomial in Equation (3.40) and the indexing function in Equation (3.39) as,

𝜃(𝑥, 𝑡) ≈
𝑁−1∑︁
𝑖=1

𝜒𝑖(𝑥)𝜃𝑖(𝑠𝑖, 𝑡) (3.41)
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To determine the time-varying coefficients in Equation (3.40), four generalized bound-

ary conditions,

𝜃𝑖(0, 𝑡) = 𝜓𝑖(𝑡)

𝜕𝜃𝑖(𝑠𝑖, 𝑡)

𝜕𝑠𝑖

⃒⃒⃒⃒
𝑠𝑖=0

= 𝑙′
𝜕𝜓𝑖(𝑡)

𝜕𝑥

𝜃𝑖(1, 𝑡) = 𝜓𝑖+1(𝑡)

𝜕𝜃𝑖(𝑠𝑖, 𝑡)

𝜕𝑠𝑖

⃒⃒⃒⃒
𝑠𝑖=1

= 𝑙′
𝜕𝜓𝑖+1(𝑡)

𝜕𝑥

(3.42)

are used, where the quantity 𝜓𝑖(𝑡) represents the time-dependent value of 𝜃(𝑠𝑖, 𝑡) at

the 𝑖𝑡ℎ node. Using the boundary conditions of Equation (3.96) to solve for Equation

(3.40), the basis function is then determind as,

𝜃𝑖(𝑠𝑖, 𝑡) =𝜓𝑖(𝑡)(1− 3𝑠2𝑖 + 2𝑠3𝑖 ) + 𝑙′
𝜕𝜓𝑖(𝑡)

𝜕𝑥
(𝑠𝑖 − 2𝑠2𝑖 + 𝑠3𝑖 )

+ 𝜓𝑖+1(𝑡)(3𝑠
2
𝑖 − 2𝑠3𝑖 ) + 𝑙′

𝜕𝜓𝑖+1(𝑡)

𝜕𝑥
(−𝑠2𝑖 + 𝑠3𝑖 )

(3.43)

Equation (3.43) is rewritten using a vector notation,

𝜃𝑖(𝑠𝑖, 𝑡) = 𝑠
⊤
𝑖 𝜃𝑖(𝑡) (3.44)

where the state vector is defined by,

𝜃𝑖(𝑡) =
[︁
𝜓𝑖(𝑡) 𝑙′ 𝜕𝜓𝑖(𝑡)

𝜕𝑥
𝜓𝑖+1(𝑡) 𝑙′ 𝜕𝜓𝑖+1(𝑡)

𝜕𝑥

]︁⊤
(3.45)

and the coordinate weight vector,

𝑠𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
1− 3𝑠2𝑖 + 2𝑠3𝑖

𝑠𝑖 − 2𝑠2𝑖 + 𝑠3𝑖

3𝑠2𝑖 − 2𝑠3𝑖

−𝑠2𝑖 + 𝑠3𝑖

⎤⎥⎥⎥⎥⎥⎥⎦ (3.46)
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which defines the shape vector. The expression in (3.46) is rewritten as,

𝑠𝑖 =
[︁

s𝑖1 s𝑖2 s𝑖3 s𝑖4
]︁⊤

(3.47)

This implies that if a pseudostate pair is defined,

𝜓𝑖(𝑡) =
[︁
𝜓𝑖(𝑡) 𝑙′ 𝜕𝜓𝑖(𝑡)

𝜕𝑥

]︁⊤
(3.48)

the element notation of Equation (3.44), can be rewritten as,

𝜃𝑖(𝑠𝑖, 𝑡) =
[︁

s𝑖1 s𝑖2
]︁
𝜓𝑖(𝑡) +

[︁
s𝑖3 s𝑖4

]︁
𝜓𝑖+1(𝑡) (3.49)

The use of these pseudostate pairs in the reconstruction of the actual spatiotemporal

variable 𝜃(𝑥, 𝑡) is illustrated in Figure 3-5.

With the pseudostate pair in Equation (3.48), a complete state vector can be

written, with respect to the variable 𝜃(𝑥, 𝑡) as,

𝜃(𝑡) =
[︁
𝜓1(𝑡) 𝜓2(𝑡) 𝜓3(𝑡) · · · 𝜓𝑁−1(𝑡) 𝜓𝑁(𝑡)

]︁⊤
(3.50)

This, in turn, allows the underlying approximation in Equation (3.41) to be rewritten

as,

𝜃(𝑥, 𝑡) ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11
s12

(s13 + s21)

(s14 + s22)
...

(s𝑁−1
3 + s𝑁1 )

(s𝑁−1
4 + s𝑁2 )

s𝑁3
s𝑁4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

𝜃(𝑡) (3.51)
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𝑙′ 𝜕𝜓𝑖(𝑡)
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𝜓𝑖+1(𝑡)

𝑙′ 𝜕𝜓𝑖+1(𝑡)
𝜕𝑥

Figure 3-5: Nodal identities of the ANCF model, allowing for high order dynamics to
be captured with two states per node.

By applying the profile approximation in Equation (3.51) to the electrolyte concen-

tration, the average solid concentration, surface concentration differential, and the

molar flux, an approximation can be obtained for 𝑐𝑒(𝑥, 𝑡) in Equation (3.15), 𝑐𝑠(𝑥, 𝑡)

in Equation (3.13), 𝑞(𝑥, 𝑡) in Equation (3.60), and 𝑗(𝑥, 𝑡) in Equation (3.56), as 𝑐𝑒(𝑡),

𝑐𝑠(𝑡), 𝑞(𝑡), and 𝑗(𝑡), respectively.

3.4.2 Solid Dynamics

In order to apply the ANCF approximation in Equation (3.51) to the transport in

the solid electrode, an approximation is introduced with respect to variation in the

𝑟-direction [54], shown to be valid for low to medium input currents [8] [54]. This

approximation is briefly summarized below. The profile of the concentrate is assumed
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to permit an expansion,

𝑐±𝑠 (𝑥, 𝑟, 𝑡) = 𝛼(𝑥, 𝑡) + 𝛽(𝑥, 𝑡)

(︂
𝑟

𝑅±
𝑝

)︂2

+ 𝛾(𝑥, 𝑡)

(︂
𝑟

𝑅±
𝑝

)︂4

(3.52)

where 𝛼(𝑥, 𝑡), 𝛽(𝑥, 𝑡) and 𝛾(𝑥, 𝑡), are unknown variables in 𝑥 and 𝑡. By defining two

new variables,

𝑐𝑠(𝑥, 𝑡) =

∫︁ 𝑅±
𝑝

𝑟=0

3

(︂
𝑟

𝑅±
𝑝

)︂2

𝑐±𝑠 (𝑥, 𝑟, 𝑡)𝑑

(︂
𝑟

𝑅±
𝑝

)︂
(3.53)

and

𝑞(𝑥, 𝑡) =

∫︁ 𝑅±
𝑝

𝑟=0

3

(︂
𝑟

𝑅±
𝑝

)︂2(︂
𝜕

𝜕𝑟
𝑐±𝑠 (𝑥, 𝑟, 𝑡)

)︂
𝑑

(︂
𝑟

𝑅±
𝑝

)︂
(3.54)

one can solve for the unknown parameters, 𝛼(𝑥, 𝑡), 𝛽(𝑥, 𝑡) and 𝛾(𝑥, 𝑡), using Equations

(3.52) and (3.13). Using appropriate boundary conditions, these terms can be defined

in terms of 𝑐𝑠(𝑥, 𝑡), 𝑞(𝑥, 𝑡) and the surface concentration, 𝑐𝑠𝑠(𝑥, 𝑡) = 𝑐±𝑠 (𝑥,𝑅
±
𝑝 , 𝑡), such

that,

𝛼(𝑥, 𝑡) =
39

4
𝑐𝑠𝑠(𝑥, 𝑡)− 3𝑅±

𝑝 𝑞(𝑥, 𝑡)−
35

4
𝑐𝑠(𝑥, 𝑡)

𝛽(𝑥, 𝑡) = −35𝑐𝑠𝑠(𝑥, 𝑡) + 10𝑅±
𝑝 𝑞(𝑥, 𝑡) + 35𝑐𝑠(𝑥, 𝑡)

𝛾(𝑥, 𝑡) =
105

4
𝑐𝑠𝑠(𝑥, 𝑡)− 7𝑅±

𝑝 𝑞(𝑥, 𝑡)−
105

4
𝑐𝑠(𝑥, 𝑡)

(3.55)

After including these terms in Equation (3.52), three equations are required to solve

for 𝑐𝑠(𝑥, 𝑡), 𝑞(𝑥, 𝑡) and 𝑐𝑠𝑠(𝑥, 𝑡). The first equation is found by solving Equation (3.13)

substituted with Equation (3.52), and solved at the boundary 𝑟 = 𝑅±
𝑝 , results in the

expression,

𝑐𝑠𝑠(𝑥, 𝑡) = 𝑐𝑠(𝑥, 𝑡) +
8𝑅±

𝑝

35
𝑞(𝑥, 𝑡)−

𝑅±
𝑝

35𝐷±
𝑠

𝑗(𝑥, 𝑡) (3.56)
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The second equation uses the left hand side of Equation (3.13) to define a bulk residue

of the solid dynamics, such that,

∫︁ 𝑅±
𝑝

𝑟=0

3

(︂
𝑟

𝑅±
𝑝

)︂2 [︂
𝜕𝑐±𝑠
𝜕𝑡
− 1

𝑟2
𝜕

𝜕𝑟

(︂
𝐷±
𝑠 𝑟

2𝜕𝑐
±
𝑠

𝜕𝑟

)︂]︂
𝑑

(︂
𝑟

𝑅±
𝑝

)︂
= 0 (3.57)

Reducing this expression results in the following equation,

𝜕𝑐𝑠(𝑥, 𝑡)

𝜕𝑡
= − 3

𝑅±
𝑝

𝑗(𝑥, 𝑡) (3.58)

where the dynamics of the average solid concentration, 𝑐𝑠(𝑥, 𝑡), is a function of the

molar flux, 𝑗(𝑥, 𝑡). The final equation in Equation (3.55) is simplified as,

∫︁ 𝑅±
𝑝

𝑟=0

3

(︂
𝑟

𝑅±
𝑝

)︂2
𝜕

𝜕𝑟

[︂
𝜕𝑐±𝑠
𝜕𝑡
− 1

𝑟2
𝜕

𝜕𝑟

(︂
𝐷±
𝑠 𝑟

2𝜕𝑐
±
𝑠

𝜕𝑟

)︂]︂
𝑑

(︂
𝑟

𝑅±
𝑝

)︂
= 0 (3.59)

Reduction of this expression yields,

𝜕𝑞(𝑥, 𝑡)

𝜕𝑡
= − 30𝐷±

𝑠(︀
𝑅±
𝑝

)︀2 𝑞(𝑥, 𝑡)− 45

2
(︀
𝑅±
𝑝

)︀2 𝑗(𝑥, 𝑡) (3.60)

where the time variation of 𝑞(𝑥, 𝑡) is an ODE forced by 𝑗(𝑥, 𝑡).

With the above, rather than Equation (3.13), simplified electrode transport dy-

namics are obtained, given by Equations (3.56), (3.58), and (3.60). Using the cor-

responding profile approximation in Equation (3.51) for 𝑐𝑠(𝑥, 𝑡) in (3.58) and 𝑞(𝑥, 𝑡)

in (3.60), one can derive the corresponding ordinary differential equations for 𝑐𝑠(𝑡) ∈

R2𝑁 and 𝑞(𝑡) ∈ R2𝑁 as,
𝑑𝑐𝑠(𝑡)

𝑑𝑡
= − 3

𝑅±
𝑝

𝑗(𝑡) (3.61)

𝑑𝑞(𝑡)

𝑑𝑡
= − 30𝐷±

𝑠(︀
𝑅±
𝑝

)︀2𝑞(𝑡)− 45

2
(︀
𝑅±
𝑝

)︀2 𝑗(𝑡) (3.62)

where 𝑗(𝑡) is the corresponding approximation to the molar flux, 𝑗(𝑥, 𝑡).
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3.4.3 Electrolyte Dynamics

In order to derive the ODE for 𝑐𝑒(𝑥, 𝑡), the elemental profile approximation in Equa-

tion (3.41) is used, rather than the nodal representation in Equation (3.51). Denoting

the left hand side of Equation (3.15) in terms of 𝑐𝑒,𝑖(𝑠𝑖, 𝑡) as 𝑅(𝑠𝑖, 𝑡), the vector nota-

tion of Equation (3.44) is used to derive the relation,

𝑅(𝑠𝑖, 𝑡) = 𝑠
⊤
𝑖

𝑑𝑐𝑒,𝑖(𝑡)

𝑑𝑡
− 𝐷𝑖(𝑡)

(𝑙′)2
𝑑2𝑠⊤𝑖
𝑑𝑠2𝑖

𝑐𝑒,𝑖(𝑡)−
𝑡0𝑎𝑎

𝜖𝑒
𝑠⊤𝑖 𝑗𝑖(𝑡) (3.63)

The term 𝑅(𝑠𝑖, 𝑡) denotes an approximation error and is referred to as a residue

function [53]. In an effort to reduce this approximation error to zero, an additional

constraint is imposed, ∫︁ 1

0

𝑠𝑖𝑅(𝑠𝑖, 𝑡)𝑑𝑠𝑖 = 0 (3.64)

commonly utilized in a Galerkin approach [53]. Equation (3.64) can be expanded as,

0 =

∫︁ 1

0

𝑠𝑖𝑠
⊤
𝑖 𝑑𝑠𝑖

𝑑𝑐𝑒,𝑖(𝑡)

𝑑𝑡
− 𝐷𝑖(𝑡)

(𝑙′)2

∫︁ 1

0

𝑠𝑖
𝑑2𝑠⊤𝑖
𝑑𝑠2𝑖

𝑑𝑠𝑖𝑐𝑒,𝑖(𝑡)−
𝑡0𝑎𝑎

𝜖𝑒

∫︁ 1

0

𝑠𝑖𝑠
⊤
𝑖 𝑑𝑠𝑖𝑗𝑖(𝑡)

= M
𝑑𝑐𝑒,𝑖(𝑡)

𝑑𝑡
− 𝐷𝑖(𝑡)

(𝑙′)2
K𝑐𝑒,𝑖(𝑡)−

𝑡0𝑎𝑎

𝜖𝑒
M𝑗𝑖(𝑡)

(3.65)

where the first integration matrix, M is defined by,

M =

∫︁ 1

0

𝑠𝑖𝑠
⊤
𝑖 𝑑𝑠𝑖 (3.66)

and the second integration matrix, K, by,

K =

∫︁ 1

0

𝑠𝑖
𝑑2𝑠⊤𝑖
𝑑𝑠2𝑖

𝑑𝑠𝑖 (3.67)

The effective diffusion coefficent, 𝐷𝑖(𝑡), constant across an element, is defined by,

𝐷𝑖 = �̄�𝑒,𝑖(𝑡)𝜖
𝑏
𝑒 (3.68)
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where 𝜖𝑒 is the electrolyte volume fraction, 𝑏 is the Bruggeman coefficient, and the

element-averaged electrolyte diffusion coefficient, �̄�𝑒 is evaluated,

�̄�𝑒,𝑖(𝑡) = 2.582× 10−9𝑒(−2.856×10−3𝑐𝑒,𝑖(𝑡)) (3.69)

and 𝑐𝑒,𝑖(𝑡) denotes the average electrolyte concentration for an element, given by,

𝑐𝑒,𝑖(𝑡) =

∫︁ 1

0

𝑠⊤𝑖 𝑐𝑒,𝑖(𝑡)𝑑𝑠𝑖 (3.70)

The complete set of equations that define the electrolyte dynamics will now be

constructed. Equation (3.66) is rewritten as,

M𝑖 =

∫︁
1

0

⎡⎣ M𝑖
11 M𝑖

12

M𝑖
21 M𝑖

22

⎤⎦𝑑𝑠𝑖 (3.71)

where the submatrices of M𝑖 are defined as,

M𝑖
𝑗𝑘 =

∫︁
1

0

⎡⎣ s𝑖2𝑗−1s𝑖2𝑘−1 s𝑖2𝑗−1s𝑖2𝑘
s𝑖2𝑗s𝑖2𝑘−1 s𝑖2𝑗s𝑖2𝑘

⎤⎦ 𝑑𝑠𝑖, (3.72)

for 𝑗, 𝑘 = 1, 2, and s𝑖𝑗 denotes the 𝑗th element of the vector 𝑠𝑖, as shown in Equation

(3.47). Similarly, Equation (3.67) can be written as,

K𝑖 =

∫︁
1

0

⎡⎣ K𝑖
11 K𝑖

12

K𝑖
21 K𝑖

22

⎤⎦𝑑𝑠𝑖 (3.73)

where the submatrices of K𝑖, are defined as,

K𝑖
𝑗𝑘 =

∫︁
1

0

⎡⎣ s𝑖2𝑗−1

𝑑2s𝑖2𝑘−1

𝑑𝑠2𝑖
s𝑖2𝑗−1

𝑑2s𝑖2𝑘
𝑑𝑠2𝑖

s𝑖2𝑗
𝑑2s𝑖2𝑘−1

𝑑𝑠2𝑖
s𝑖2𝑗

𝑑2s𝑖2𝑘
𝑑𝑠2𝑖

⎤⎦ 𝑑𝑠𝑖, (3.74)
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for 𝑗, 𝑘 = 1, 2. Using Equations (3.65), (3.71) and (3.73), a set of ODEs that describes

the electrolyte dynamics can be written as,

0 =

(︂
M𝑖−1

21

𝑑𝑐𝑖−1
𝑒

𝑑𝑡
+
(︀
M𝑖

11 + M𝑖
22

)︀ 𝑑𝑐𝑖𝑒
𝑑𝑡

+ M𝑖+1
12

𝑑𝑐𝑖+1
𝑒

𝑑𝑡

)︂
− 1

(𝑙′)2
(︀
𝐷𝑖−1K𝑖−1

21 𝑐
𝑖−1
𝑒 +

(︀
𝐷𝑖K𝑖

11 +𝐷𝑖−1K𝑖
22

)︀
𝑐𝑖𝑒 +𝐷𝑖K𝑖+1

12 𝑐
𝑖+1
𝑒

)︀
+

(︂
𝑡0𝑎𝑎

𝜖𝑒

)︂(︀
M𝑖−1

21 𝑗
𝑖−1 +

(︀
M𝑖

11 + M𝑖
22

)︀
𝑗𝑖 + M𝑖+1

12 𝑗
𝑖+1
)︀

(3.75)

where 𝑐𝑖𝑒 and 𝑗𝑖 denote the state pair corresponding to 𝑐𝑒(𝑡) and 𝑗(𝑡), respectively,

defined as in Equation (3.48). The equation for the electrolyte dynamics, Equation

(3.65), can be combined in vector form as,

0 = M
𝑑𝑐𝑒(𝑡)

𝑑𝑡
− 1

(𝑙′)2
K𝑐𝑒(𝑡)−

𝑡0𝑎𝑎

𝜖𝑒
M𝑗(𝑡) (3.76)

where the full system integration matrix, M ∈ R2𝑁×2𝑁 , is defined by,

M =

⎡⎢⎢⎢⎢⎢⎣
M1

11 M1
12 0 0

M1
21 M1

22 + M2
11 M2

12 0

0 M2
21

. . . M𝑁
12

0 0 M𝑁−1
21 M𝑁

22

⎤⎥⎥⎥⎥⎥⎦ (3.77)

while the matrix, K ∈ R2𝑁×2𝑁 , is defined by,

K =

⎡⎢⎢⎢⎢⎢⎣
𝐷1K1

11 𝐷1K1
12 0 0

𝐷1K1
21 (𝐷1K1

22 +𝐷2K2
11) 𝐷2K2

12 0

0 𝐷2K2
21

. . . 𝐷𝑁K𝑁
12

0 0 𝐷𝑁−1K𝑁−1
21 𝐷𝑁K𝑁

22

⎤⎥⎥⎥⎥⎥⎦ (3.78)

In summary, Equation (3.65), which describes the ODE counterpart of the electrolyte
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dynamics, can be rewritten as,

𝑑𝑐𝑒(𝑡)

𝑑𝑡
=

1

(𝑙′)2
M−1K𝑐𝑒(𝑡) +

𝑡0𝑎𝑎

𝜖𝑒
𝑗(𝑡) (3.79)

3.4.4 Butler-Volmer Kinetics

The final component of the ANCF model is the differential algebraic constraint im-

posed by the Butler-Volmer kinetics. For this purpose, Equation (3.20) is differenti-

ated with respect to 𝑥, and Equation (3.16) is substituted to yield,

𝜕2𝜑±
𝑠 (𝑥, 𝑡)

𝜕𝑥2
=
𝑎±𝐹

𝜎± 𝑗(𝑥, 𝑡) (3.80)

Integrating Equation (3.80) twice, while substituting in the ANCF expansions from

Equation (3.44) corresponding to 𝜑±
𝑠 (𝑥, 𝑡), produces,

𝜑𝑠,𝑖(𝑠𝑖, 𝑡) =
𝑎±𝐹

𝜎± (𝑙′)2
∫︁∫︁

𝑠⊤𝑖 𝑗𝑖(𝑡)𝑑𝑠𝑖𝑑𝑠𝑖 + 𝑙′
𝜕𝜑𝑠,𝑖
𝜕𝑥

𝑠𝑖 + 𝜑𝑠,𝑖. (3.81)

Similarly, using Equation (3.21), an ANCF formulation of the electrolytic potential

is derived as,

𝜑𝑒,𝑖(𝑠𝑖, 𝑡) =−
𝐼(𝑡)

𝜅𝑒𝑓𝑓
𝑠𝑖 −

𝜎±

𝜅𝑒𝑓𝑓
(𝜑𝑠,𝑖(𝑠𝑖, 𝑡)− 𝜑𝑠,𝑖)

+
2𝑅𝑇 (1− 𝑡0𝑐)

𝐹
(ln (𝑐𝑒,𝑖(𝑠𝑖, 𝑡))− ln (𝑐𝑒,𝑖)) + 𝜑𝑒,𝑖

(3.82)

Subsequently, an ANCF formulation of the overpotential, derived from Equation

(3.19), can be defined such that,

𝜂𝑖(𝑠𝑖, 𝑡) = 𝜑𝑠,𝑖(𝑠𝑖, 𝑡)− 𝜑𝑒,𝑖(𝑠𝑖, 𝑡)− 𝒰𝑖(𝑐𝑠𝑠,𝑖(𝑠𝑖, 𝑡)) (3.83)

which ignores ohmic losses, thereby allowing the last term in Equation (3.19) to be

set to zero. The Butler-Volmer kinetics, Equation (3.17), can then be fully described
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in the absolute nodal coordinates, using 𝑗𝑖(𝑠𝑖, 𝑡) as an algebraic constraint,

𝑗𝑖(𝑠𝑖, 𝑡) = 𝑖0(𝑐𝑒,𝑖(𝑠𝑖, 𝑡), 𝑐𝑠𝑠,𝑖(𝑠𝑖, 𝑡))

[︂
exp

(︂
𝛼𝑐𝐹

𝑅𝑇
𝜂𝑖(𝑠𝑖, 𝑡)

)︂
− exp

(︂
𝛼𝑎𝐹

𝑅𝑇
𝜂𝑖(𝑠𝑖, 𝑡)

)︂]︂
(3.84)

where the exchange current density, 𝑖0, is defined by,

𝑖0(𝑐𝑒,𝑖(𝑠𝑖, 𝑡), 𝑐𝑠𝑠,𝑖(𝑠𝑖, 𝑡)) = 𝑘±𝑐𝑒,𝑖(𝑠𝑖, 𝑡)
𝛼𝑎
(︀
𝑐±𝑠,𝑚𝑎𝑥 − 𝑐𝑠𝑠,𝑖(𝑠𝑖, 𝑡)

)︀𝛼𝑎
𝑐𝑠𝑠,𝑖(𝑠𝑖, 𝑡)

𝛼𝑐 (3.85)

To solve this equation, a residue, 𝑅𝑖(𝑠𝑖, 𝑡), is defined as,

𝑅𝑖(𝑠𝑖, 𝑡) =𝑖0(𝑐𝑒,𝑖(𝑠𝑖, 𝑡), 𝑐𝑠𝑠,𝑖(𝑠𝑖, 𝑡))

[︂
exp

(︂
𝛼𝑐𝐹

𝑅𝑇
𝜂𝑖(𝑠𝑖, 𝑡)

)︂
− exp

(︂
𝛼𝑎𝐹

𝑅𝑇
𝜂𝑖(𝑠𝑖, 𝑡)

)︂]︂
− 𝑗𝑖(𝑠𝑖, 𝑡)

(3.86)

The goal is to choose 𝑗𝑖 so that this residue is minimized, which can be accomplished

using the orthogonal collocation method [8]. For this purpose, checking points, 𝑑𝑗,

are chosen in the interval 𝑠𝑖 ∈ [0, 1] as roots of the Gauss-Legendre polynomial [1].

The molar flux, 𝑗𝑖, is then chosen so that the expression,

0 =

∫︁ 1

0

𝛿𝑖(𝑠𝑖 − 𝑑𝑗)𝑅𝑖(𝑠𝑖, 𝑡)𝑑𝑠𝑖, 𝑗 = 1, . . . , 4 (3.87)

through a nonlinear solver [32]. Such a determination of the flux requires 𝑘 iterations

to bring the residue 𝑅𝑖(𝑑𝑗, 𝑡) down to an appropriately small value. As shown in

Section 3.4.6, the use of a damped least squares algorithm can be employed for these

iterations, with the corresponding 𝑘 chosen so as to reduce the norm of 𝑅𝑖(𝑑𝑗, 𝑡) to

less than 10−6.

3.4.5 Overall ANCF Model

The complete ANCF model is determined by the ordinary differential equations in

Equations (3.61), (3.62) and (3.79), with the molar flux approximation 𝑗(𝑡) deter-

mined so that the residue, 𝑅𝑖 in Equation (3.86) is minimized. As the latter involves
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numerical iterations at each time step, numerical integration of the underlying ODE

is somewhat complex.

The overall ANCF algorithm is summarized below, in Algorithm 1, which includes

numerical integration of ODEs, as well as the numerical iterations associated with

algebraic constraint. Algorithm 1 proceeds with an initialization of 𝑐𝑠(𝑡) ∈ R2𝑁 from

Algorithm 1: ANCF Li-ion Cell Model
1 function ANCF(𝑐𝑠,0, 𝑞0, 𝑐𝑒,0, 𝜖𝑅, 𝑇𝑓 , 𝐼)
2 𝑐𝑠 ← 𝑐𝑠,0
3 𝑙← 1
4 𝑞𝑙 ← 𝑞0
5 𝑐𝑙𝑒 ← 𝑐𝑒,0
6 𝑗𝑙 ← 0
7 calculate 𝑑𝑗
8 do
9 𝑘 ← 0

10 do
11 for 𝑖 ∈ [1, 𝑁 ] do
12 compute 𝜑𝑒,𝑖(𝐼), 𝜑𝑠,𝑖, 𝒰𝑖
13 compute 𝜂𝑖
14 for 𝑗 ∈ [1, 4] do
15 compute 𝑅𝑘

𝑖 (𝑑𝑗)
// nonlinear solve

16 solve 𝜕𝑅𝑘
𝑖

𝜕𝑗𝑙,𝑘
Δ𝑗𝑙,𝑘𝑖 (𝑑𝑗) = −𝑅𝑘

𝑖 (𝑑𝑗)

17 end
18 end
19 𝑗𝑙,𝑘+1 ← 𝑗𝑙,𝑘 +Δ𝑗𝑙,𝑘

20 𝑘 ← 𝑘 + 1

21 while
⃦⃦
𝑅𝑘
⃦⃦
> 𝜖𝑅

22 𝑗𝑙 ← 𝑗𝑙,𝑘

23 𝑐𝑙+1
𝑠 ← 𝑐𝑙𝑠 +Δ𝑡𝑓(𝑐𝑙𝑠, 𝑗

𝑙)
24 𝑞𝑙+1 ← 𝑞𝑙 +Δ𝑡𝑓(𝑞𝑙𝑠, 𝑗

𝑙)
25 𝑐𝑙+1

𝑒 ← 𝑐𝑙𝑒 +Δ𝑡𝑓(𝑐𝑙𝑒, 𝑗
𝑙)

26 𝑙← 𝑙 + 1

27 while 𝑡𝑙 ≤ 𝑇𝑓

Equation (3.61), 𝑐𝑒(𝑡) ∈ R2𝑁−1 from Equation (3.79), and 𝑞(𝑡) ∈ R2𝑁 from Equation

(3.62), at 𝑡 = 0, with an arbitrary initialization as 𝑗(𝑡) = 0. For 𝑠𝑖 ∈ [0, 1], 𝑑𝑗 is

calculated as the roots of the Gauss-Legendre polynomial [1]. With these values,

𝑐𝑠,0, 𝑐𝑒,0, 𝑞0 and 𝑗0, 𝑐𝑠𝑠(𝑠𝑖, 0) is determined using Equation (3.56), and therefore
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𝒰(𝑐𝑠𝑠(𝑠𝑖, 0)) from Equation (3.83). Using Equations (3.81) to (3.83), the residue

𝑅𝑖(𝑠𝑖, 𝑡) is determined and minimized using a nonlinear solver. The corresponding

argument that minimizes 𝑅𝑖 determines 𝑗(𝑡) over the element 𝑠𝑖, and this process is

repeated for all 𝑠𝑖. Using 𝑗(𝜏), Equations (3.61), (3.62), and (3.79) are integrated

to determine 𝑐𝑠, 𝑞, 𝑐𝑒 at 𝑡 = 𝜏 . This process is repeated at each timestep, for all

𝑠𝑖, 𝑖 = 1, . . . , 𝑁 , leading to the overall ANCF-based solution. Table 3.1 shows the

parameters used in the simulations described in Section 3.6 for all models.

3.4.6 Computational Complexity

The ANCF model presented above is an ODE of order 𝑁𝑐 = 6𝑁 − 2, given by

Equations (3.61), (3.62) and (3.79), with 𝑁𝑗 = 2𝑁−2 nonlinear algebraic constraints,

given in Equation (3.87), with the reduction by two due to boundary conditions. As

will be validated in the following section, the value of the ANCF lies in its concurrent

realization of reduced computational complexity through model order reduction and

fidelity to the truth model, while maintaining a tangible relationship to physical

parameters. As noted above, at each timestep, 𝑘 iterations are needed to determine

𝑗, and therefore the entire computational complexity of the ANCF is 𝑂(𝑁2
𝑐 +4𝑘𝑁2

𝑗 ).

Defining 𝑁𝑇 = 𝑁𝑐 + 𝑁𝑗, it can be seen that for 𝑁 = 6, 𝑁𝑐 = 34 and 𝑁𝑗 = 10, such

that 𝑁𝑇 = 44.

In comparison with the computational complexity of the ANCF, it should be

noted that the complexity of other MOR methods described in Section 3.3.2 is of

the order 𝑂(𝑞2). In addition, these methods can achieve a desired accuracy with

𝑞 = 3 states in comparison with 𝑁𝑇 = 44 with the ANCF. It should be noted,

however, that connection to the underlying physics and electrochemistry in these

models is nonexistent, with a slight exception in the case of Padé approximation.

In the latter, the moments can be matched around 𝑠 = 𝑥, where 𝑥 is any physical

parameter [16], but the transition from the spatiotemporal domain to the frequency

domain for purposes of parameter estimation is complex, and presents a realistically

intractable transformation.

The methods based on orthogonal collocation of finite elements [8] (OCFE) also
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has reduced-order and is computationally simpler than the full order DFN finite

volume solution, with a complexity of 𝑂(𝑁2), where 𝑁 ≈ 1600. Such a high number

of states is clearly undesirable for state and parameter estimation during the short

cycling times that result from high discharge rates. In contrast, the ANCF method

results in comparable accuracy with much fewer states.

Rather than provide a comparison through computation times, the computational

complexity of the proposed algorithm is presented as the order of complexity, O(.).

Such a metric is widely used, and offers a degree of freedom for the designer to

choose complexity as a function of node quantity, which directly effects the accuracy

of any simulation. Specific simulation times are dependent on several elements, most

importantly the processor capabilities of a given simulation computer, as well as the

implementation of the nonlinear solution. If a user defines an explicit derivation

of the Jacobian of the residual, 𝜕𝑅𝑘
𝑖

𝜕𝑗𝑙,𝑘
, the solution speed is greatly improved. It is,

however, possible to implement a method with a numerically perturbed Jacobian,

which slows the convergence of the residual of the algebraic constraint, but allows

for rapid development of the model. For the purposes of ubiquity, the computational

complexity is presented for comparison of numerical methods.

3.5 ANCF II Model

While working with the ANCF model, it became clear that some of the goals per-

taining to an observer would be complicated by the structure of the ANCF, and with

modifications, the model could be better suited to the design of observers. This ad-

justment pertains to reducing the number of algebraic constraints, and subsequently

reducing the overall number of states, but presumably comes at a cost, which is the

loss of fidelity with respect to the higher-order model. Section 3.5.1 discusses the

approach to reducing the constraints and states, through the usage of mixed basis

functions. Section 3.5.2, discusses how this affects the expression of the solid dy-

namics, while Section 3.5.3 discusses the effect on the electrolyte dynamics. Finally,

Section 3.5.4 explicates the changes to the Butler-Volmer kinetics, dictating the forc-
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ing functions for the dynamics in both the solid electrodes and electrolyte.

3.5.1 Mixed Basis Functions

The accuracy of the ANCF is founded on its use of polynomial basis functions, as

described in Section 3.4.1. This can be a detriment for an observer because of the

high number of degrees of freedom for its characterization. The full ANCF model im-

plementation comes from a homogeneous structure, without consideration for where

high degrees of freedom are needed, versus where limited state variables would benefit

the observer construction. To remedy this fact, a second basis function is presented

using a new pseudostate variable, 𝜃*(𝑥, 𝑡), as well as the previous pseudostate variable,

𝜃(𝑥, 𝑡). These can again be conceptualized as surrogate variables for other concen-

tration states, such as the bulk solid concentration, 𝑐*𝑠(𝑥, 𝑡), and solid concentration

differential, 𝑞*(𝑥, 𝑡); and the molar flux constraint, 𝑗*(𝑥, 𝑡), in the case of 𝜃*(𝑥, 𝑡), and

the electrolyte concentration for 𝜃(𝑥, 𝑡). The distinction being made in notation is of

a different basis function, specifically a linear basis function that is used to approx-

imate the states with a * superscript, and the same polynomial basis from Section

3.4.1 otherwise. The solid electrode and separator volumes are again discretized into

𝑁 nodes, defining 𝑁 − 1 elements along the dominant spatial dimension, 𝑥. The

element length remains defined as,

𝑙′ =
𝐿

𝑁 − 1
(3.88)

using 𝐿 as the full length of the volume in question. A local coordinate, �̄�𝑖(𝑥, 𝑖), is

defined as,

�̄�𝑖(𝑥, 𝑖) =
𝑥− (𝑖− 1)𝑙′

𝑙′
(3.89)

for all elements, 𝑖 ∈ [1 . . . 𝑁 − 1], in the volumes. The change in notation is in-

tended to add clarity with regards to the different basis functions. The same indexing
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function is defined,

𝜒𝑖(𝑥) =

⎧⎨⎩ 1 if x ∈
[︁

il’, (i+1)l’
]︁
,

0 else.
(3.90)

The characteristic polynomial remains for 𝜃𝑖(�̄�𝑖, 𝑡),

𝜃𝑖(�̄�𝑖, 𝑡) = 𝛼𝑖(𝑡) + 𝛽𝑖(𝑡)�̄�𝑖 + 𝛾𝑖(𝑡)�̄�
2
𝑖 + 𝛿𝑖(𝑡)�̄�

3
𝑖 (3.91)

but is altered for 𝜃*𝑖 (�̄�𝑖, 𝑡),

𝜃*𝑖 (�̄�𝑖, 𝑡) = 𝛼𝑖(𝑡) + 𝛽𝑖(𝑡)�̄�𝑖 (3.92)

Using the indexing function of Equation (3.90), in conjunction with Equations (3.91)

and (3.92), the full approximation is generated for each basis function, such that,

𝜃(𝑥, 𝑡) ≈
𝑁−1∑︁
𝑖=1

𝜒𝑖(𝑥)𝜃𝑖(�̄�𝑖, 𝑡) (3.93)

𝜃*(𝑥, 𝑡) ≈
𝑁−1∑︁
𝑖=1

𝜒𝑖(𝑥)𝜃
*
𝑖 (�̄�𝑖, 𝑡) (3.94)

The same boundary conditions are used for Equation (3.91) as were delineated pre-

viously,

𝜃𝑖(0, 𝑡) = 𝜓𝑖(𝑡)

𝜕𝜃𝑖(�̄�𝑖, 𝑡)

𝜕�̄�𝑖

⃒⃒⃒⃒
�̄�𝑖=0

= 𝑙′
𝜕𝜓𝑖(𝑡)

𝜕𝑥

𝜃𝑖(1, 𝑡) = 𝜓𝑖+1(𝑡)

𝜕𝜃𝑖(�̄�𝑖, 𝑡)

𝜕�̄�𝑖

⃒⃒⃒⃒
𝑠𝑖=1

= 𝑙′
𝜕𝜓𝑖+1(𝑡)

𝜕𝑥

(3.95)
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while Equation (3.92) uses a subset of those boundary conditions,

𝜃𝑖(0, 𝑡) = 𝜓𝑖(𝑡)

𝜃𝑖(1, 𝑡) = 𝜓𝑖+1(𝑡)
(3.96)

Again, 𝜓𝑖(𝑡) represents the time-dependent value of either 𝜃𝑖(�̄�𝑖, 𝑡) or 𝜃*𝑖 (�̄�𝑖, 𝑡) at the

𝑖𝑡ℎ node. Herein lies the value of the new basis function, which has fewer degrees of

freedom to estimate. However, the advantage of using the higher order polynomial

basis functions was higher fidelity, and thus, a judicious choice must be made of where

to apply the linear basis functions. The solution, then to Equation (3.91) becomes,

𝜃𝑖(�̄�𝑖, 𝑡) =𝜓𝑖(𝑡)(1− 3�̄�2𝑖 + 2�̄�3𝑖 ) + 𝑙′
𝜕𝜓𝑖(𝑡)

𝜕𝑥
(�̄�𝑖 − 2�̄�2𝑖 + �̄�3𝑖 )

+ 𝜓𝑖+1(𝑡)(3�̄�
2
𝑖 − 2�̄�3𝑖 ) + 𝑙′

𝜕𝜓𝑖+1(𝑡)

𝜕𝑥
(−�̄�2𝑖 + �̄�3𝑖 )

(3.97)

while the solution to Equation (3.92) becomes,

𝜃*𝑖 (�̄�𝑖, 𝑡) = 𝜓𝑖(𝑡)(1− �̄�𝑖) + 𝜓𝑖+1(𝑡)(�̄�𝑖) (3.98)

Equation (3.97) is again rewritten using a vector notation,

𝜃𝑖(�̄�𝑖, 𝑡) = 𝑠
⊤
𝑖 𝜃𝑖(𝑡) (3.99)

where the state vector is also defined by,

𝜃𝑖(𝑡) =
[︁
𝜓𝑖(𝑡) 𝑙′ 𝜕𝜓𝑖(𝑡)

𝜕𝑥
𝜓𝑖+1(𝑡) 𝑙′ 𝜕𝜓𝑖+1(𝑡)

𝜕𝑥

]︁⊤
(3.100)

and the coordinate weight vector,

𝑠𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
1− 3�̄�2𝑖 + 2�̄�3𝑖

�̄�𝑖 − 2�̄�2𝑖 + �̄�3𝑖

3�̄�2𝑖 − 2�̄�3𝑖

−�̄�2𝑖 + �̄�3𝑖

⎤⎥⎥⎥⎥⎥⎥⎦ (3.101)
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Conversely, Equation (3.98) is rewritten in vector notation as,

𝜃*𝑖 (�̄�𝑖, 𝑡) = 𝑣
⊤
𝑖 𝜃

*
𝑖 (𝑡) (3.102)

where the new state vector is defined by,

𝜃*𝑖 (𝑡) =
[︁
𝜓𝑖(𝑡) 𝜓𝑖+1(𝑡)

]︁⊤
(3.103)

and the new coordinate weight vector is defined by,

𝑣𝑖 =

⎡⎣ 1− �̄�𝑖
�̄�𝑖

⎤⎦ (3.104)

The expression in (3.101) is rewritten as,

𝑠𝑖 =
[︁

s𝑖1 s𝑖2 s𝑖3 s𝑖4
]︁⊤

(3.105)

This implies that if a pseudostate pair is defined,

𝜓𝑖(𝑡) =
[︁
𝜓𝑖(𝑡) 𝑙′ 𝜕𝜓𝑖(𝑡)

𝜕𝑥

]︁⊤
(3.106)

the element notation of Equation (3.99), can be rewritten as,

𝜃𝑖(�̄�𝑖, 𝑡) =
[︁

s𝑖1 s𝑖2
]︁
𝜓𝑖(𝑡) +

[︁
s𝑖3 s𝑖4

]︁
𝜓𝑖+1(𝑡) (3.107)

The use of these pseudostate pairs in the reconstruction of the actual spatiotemporal

variable 𝜃(𝑥, 𝑡) is previously illustrated in Figure 3-5. Conversely, the linear basis

function described in Equation (3.104), can be expressed as,

𝑣𝑖 =
[︁

v𝑖1 v𝑖2
]︁⊤

(3.108)

no longer requiring a pseudostate pair, but instead, a state per node, such that
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Equation (3.102) is rewritten as,

𝜃*𝑖 (�̄�𝑖, 𝑡) = v𝑖1𝜓
𝑖(𝑡) + v𝑖2𝜓

𝑖+1(𝑡) (3.109)

With the pseudostate pair in Equation (3.106), a complete state vector can be

written, with respect to the variable 𝜃(𝑥, 𝑡) as,

𝜃(𝑡) =
[︁
𝜓1(𝑡) 𝜓2(𝑡) 𝜓3(𝑡) · · · 𝜓𝑁−1(𝑡) 𝜓𝑁(𝑡)

]︁⊤
(3.110)

This, in turn, allows the underlying approximation in Equation (3.93) to be rewritten

as,

𝜃(𝑥, 𝑡) ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11
s12

(s13 + s21)

(s14 + s22)
...

(s𝑁−1
3 + s𝑁1 )

(s𝑁−1
4 + s𝑁2 )

s𝑁3
s𝑁4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

𝜃(𝑡) (3.111)

In addition, a full state vector is defined for the linear approximation shown in Equa-

tion (3.109), such that,

𝜃*(𝑡) =
[︁
𝜓1(𝑡) 𝜓2(𝑡) 𝜓3(𝑡) · · · 𝜓𝑁−1(𝑡) 𝜓𝑁(𝑡)

]︁⊤
(3.112)
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and subsequently Equation (3.94) becomes,

𝜃*(𝑥, 𝑡) ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
1

(v1
2 + v2

1)

(v2
2 + v3

1)
...(︀

v𝑁−1
2 + v𝑁1

)︀
v𝑁2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

𝜃*(𝑡) (3.113)

Both Equation (3.111) and (3.113) are available for use within the model, and the

method of their mixing will become more clear in Sections 3.5.2 – 3.5.4. First and

foremost, however, a determination must be made regarding their appropriate use

within the model. For the purposes of the observers described in Chapter 4, it will be

useful to reduce the overall number of constraints for a-priori estimation, while main-

taining parallel plants in the solid regime. Additionally, it is clear from Equations

(3.61) and (3.62) that matching the basis function representing the solid concentra-

tions and molar flux is convenient, to eliminate additional system matrices. However,

the advantage of the ANCF model is apparent from its incorporation of highly variable

electrolyte dynamics, allowing for high fidelity during large current inputs. Therefore,

the third-order polynomial basis function of Equation (3.111) is chosen to represent

the electrolyte dynamics, 𝑐𝑒(𝑡), while the linear basis function of Equation (3.113) is

chosen to represent the solid dynamics, 𝑐*𝑠(𝑡), 𝑞*(𝑡), and molar flux, 𝑗*(𝑡), using the
* superscript to denote the linear basis function. The following sections describe how

this change affects the ANCF model previously presented in Section 3.4.

3.5.2 Update to Solid Dynamics

As mentioned in Section 3.5.1, there is an advantage to using the same basis function

for both the solid dynamics and the molar flux. The solid dynamics of the DFN are

defined as,
𝜕𝑐±𝑠 (𝑥, 𝑟, 𝑡)

𝜕𝑡
=

1

𝑟2
𝜕

𝜕𝑟

(︂
𝐷±
𝑠 𝑟

2𝜕𝑐
±
𝑠 (𝑥, 𝑟, 𝑡)

𝜕𝑟

)︂
(3.114)
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𝜕𝑐±𝑠 (𝑥, 𝑟, 𝑡)

𝜕𝑟

⃒⃒⃒⃒
𝑟=0

= 0

𝜕𝑐±𝑠 (𝑥, 𝑟, 𝑡)

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑅±

𝑝

= −𝑗(𝑥, 𝑡)
𝐷±
𝑠

(3.115)

and the same approximation is maintained as presented in Equations (3.52) – (3.60).

This results in a representation as repeated below,

𝜕𝑐𝑠(𝑥, 𝑡)

𝜕𝑡
= − 3

𝑅±
𝑝

𝑗(𝑥, 𝑡) (3.116)

𝜕𝑞(𝑥, 𝑡)

𝜕𝑡
= − 30𝐷±

𝑠(︀
𝑅±
𝑝

)︀2 𝑞(𝑥, 𝑡)− 45

2
(︀
𝑅±
𝑝

)︀2 𝑗(𝑥, 𝑡) (3.117)

Now, using the linear basis function as described in Equation (3.113), these equations

are transformed to,
𝑑𝑐*𝑠(𝑡)

𝑑𝑡
= − 3

𝑅±
𝑝

𝑗*(𝑡) (3.118)

𝑑𝑞*(𝑡)

𝑑𝑡
= − 30𝐷±

𝑠(︀
𝑅±
𝑝

)︀2𝑞*(𝑡)− 45

2
(︀
𝑅±
𝑝

)︀2 𝑗*(𝑡) (3.119)

𝑐*𝑠𝑠 = 𝑐
*
𝑠(𝑡) +

8𝑅±
𝑝

35
𝑞* −

𝑅±
𝑝

35𝐷±
𝑠

𝑗* (3.120)

for 𝑐*𝑠(𝑡) ∈ R𝑁 , 𝑞*(𝑡) ∈ R𝑁 , 𝑗*(𝑡) ∈ R𝑁 , and 𝑐*𝑠𝑠(𝑡) ∈ R𝑁 . It should be noted that

while the representation shown in Equations (3.118) – (3.120) use full system vectors,

the pairs of states defining the solid concentration for each node, 𝑖, 𝑐*𝑠,𝑖(𝑡) and 𝑞*𝑖 (𝑡),

are independent of each other, allowing for the establishment of parallel single-input,

single-output (SISO) systems. This formulation is defined by,

�̇�𝑖 = 𝐴𝑥𝑖(𝑡) +𝐵𝑗*𝑖 (𝑡)

𝑐*𝑠𝑠,𝑖(𝑡) = 𝐶⊤𝑥𝑖 +𝐷𝑗*𝑖 (𝑡)
(3.121)

with system matrices defined by,

𝐴 =

⎡⎢⎣ 0 0

0 − 30𝐷±
𝑠

(𝑅±
𝑝 )

2

⎤⎥⎦ (3.122)
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𝐵 =

⎡⎢⎣ − 3
𝑅±

𝑝

− 45

2(𝑅±
𝑝 )

2

⎤⎥⎦ (3.123)

𝐶 =

⎡⎣ 1

8𝑅±
𝑝

35

⎤⎦ (3.124)

𝐷 = −
𝑅±
𝑝

35𝐷±
𝑠

(3.125)

and a state vector, 𝑥𝑖(𝑡), defined as,

𝑥𝑖(𝑡) =

⎡⎣ 𝑐*𝑠,𝑖(𝑡)

𝑞*𝑖 (𝑡)

⎤⎦ (3.126)

Therefore, a full multiple-input, multiple-output (MIMO) system can be defined as,

�̇� = 𝐴𝑥(𝑡) + �̄�𝑗*(𝑡)

𝑐*𝑠𝑠(𝑡) = 𝐶⊤𝑥(𝑡) + �̄�𝑗*(𝑡)
(3.127)

where the system matrices, with volume specific parameters denoted by the (−) and

(+) subscripts, are defined as,

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴− 0 · · · 0 0

0 𝐴− · · · 0 0
...

... . . . ...
...

0 0 · · · 𝐴+ 0

0 0 · · · 0 𝐴+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.128)

�̄� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵− 0 · · · 0 0

0 𝐵− · · · 0 0
...

... . . . ...
...

0 0 · · · 𝐵+ 0

0 0 · · · 0 𝐵+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.129)
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𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶− 0 · · · 0 0

0 𝐶− · · · 0 0
...

... . . . ...
...

0 0 · · · 𝐶+ 0

0 0 · · · 0 𝐶+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.130)

�̄� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷− 0 · · · 0 0

0 𝐷− · · · 0 0
...

... . . . ...
...

0 0 · · · 𝐷+ 0

0 0 · · · 0 𝐷+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.131)

with 𝐴 ∈ R2𝑁×2𝑁 , �̄� ∈ R2𝑁×𝑁 , 𝐶 ∈ R2𝑁×𝑁 , and �̄� ∈ R𝑁×𝑁 . The full state vector,

𝑥(𝑡) is defined by,

𝑥(𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)

𝑥2(𝑡)
...

𝑥𝑁−1(𝑡)

𝑥𝑁(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.132)

for 𝑥(𝑡) ∈ R2𝑁 . The full system solid dynamics can be succinctly defined by Equation

(3.127), but Equations (3.128) – (3.131) reveal that the states of the nodes are still

independent of one another while sharing the same parameters for each volume, a

trait to be leveraged in Chapter 4.

3.5.3 Update to Electrolyte Dynamics

The electrolyte dynamics as prescribed by the DFN model are,

𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥

(︂
𝐷𝑒

𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑥

)︂
+

1

𝐹𝜖𝑒

𝜕(𝑡0𝑎𝑖𝑒(𝑥, 𝑡))

𝜕𝑥
(3.133)
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which matches the definition of Section 3.3.1. The boundary conditions are defined

as,

𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=0−

= 0

𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=0+

= 0

(3.134)

𝜖−𝑒

(︂
𝐷𝑒

𝜕𝑐𝑒
𝜕𝑥

)︂⃒⃒⃒⃒
𝑥=𝐿−

= 𝜖𝑠𝑒𝑝𝑒

(︂
𝐷𝑒

𝜕𝑐𝑒
𝜕𝑥

)︂⃒⃒⃒⃒
𝑥=0𝑠𝑒𝑝

𝜖𝑠𝑒𝑝𝑒

(︂
𝐷𝑒

𝜕𝑐𝑒
𝜕𝑥

)︂⃒⃒⃒⃒
𝑥=𝐿𝑠𝑒𝑝

= 𝜖+𝑒

(︂
𝐷𝑒

𝜕𝑐𝑒
𝜕𝑥

)︂⃒⃒⃒⃒
𝑥=𝐿+

(3.135)

𝑐𝑒(𝐿
−, 𝑡) = 𝑐𝑒(0

𝑠𝑒𝑝, 𝑡)

𝑐𝑒(𝐿
𝑠𝑒𝑝, 𝑡) = 𝑐𝑒(𝐿

+, 𝑡)
(3.136)

Using a residual replaced with the vector representations of Equations (3.111) and

(3.113) replacing the full-form spatiotemporal terms to turn the PDE into an ODE,

𝑅1,𝑖(�̄�𝑖, 𝑡) = 𝑠
⊤
𝑖

𝑑𝑐𝑒,𝑖(𝑡)

𝑑𝑡
− 𝐷𝑖(𝑡)

(𝑙′)2
𝑑2𝑠⊤𝑖
𝑑�̄�2𝑖

𝑐𝑒,𝑖(𝑡)−
𝑡0𝑎𝑎

𝜖𝑒
𝑣⊤𝑖 𝑗

*
𝑖 (𝑡) (3.137)

Subsequently, this residual, 𝑅1,𝑖(�̄�𝑖, 𝑡), is weighted with the polynomial weight vector,

𝑠𝑖, to develop a solution for the time dynamics,

∫︁ 1

0

𝑠𝑖𝑅1,𝑖(�̄�𝑖, 𝑡)𝑑�̄�𝑖 = 0 (3.138)

It should be noted that the same weight polynomial is chosen corresponding to the

time-derivative term, such that an invertible matrix is developed. The explicit inte-

gration of Equation (3.138) is defined as,

0 =

∫︁ 1

0

𝑠𝑖𝑠
⊤
𝑖 𝑑�̄�𝑖

𝑑𝑐𝑒,𝑖(𝑡)

𝑑𝑡
− 𝐷𝑖(𝑡)

(𝑙′)2

∫︁ 1

0

𝑠𝑖
𝑑2𝑠⊤𝑖
𝑑�̄�2𝑖

𝑑�̄�𝑖𝑐𝑒,𝑖(𝑡)−
𝑡0𝑎𝑎

𝜖𝑒

∫︁ 1

0

𝑠𝑖𝑣
⊤
𝑖 𝑑�̄�𝑖𝑗

*
𝑖 (𝑡)

= M
𝑑𝑐𝑒,𝑖(𝑡)

𝑑𝑡
− 𝐷𝑖(𝑡)

(𝑙′)2
K𝑐𝑒,𝑖(𝑡)−

𝑡0𝑎𝑎

𝜖𝑒
L𝑗*𝑖 (𝑡)

(3.139)
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where M ∈ R4×4 is defined as,

M =

∫︁ 1

0

𝑠𝑖𝑠
⊤
𝑖 𝑑�̄�𝑖 (3.140)

K ∈ R4×4 is defined as,

K =

∫︁ 1

0

𝑠𝑖
𝑑2𝑠⊤𝑖
𝑑�̄�2𝑖

𝑑�̄�𝑖 (3.141)

and L ∈ R4×2 is defined as,

L =

∫︁ 1

0

𝑠𝑖𝑣
⊤
𝑖 𝑑�̄�𝑖 (3.142)

The effective diffusion coefficient, 𝐷𝑖(𝑡), is defined the same as Equation (3.143),

𝐷𝑖 = �̄�𝑒,𝑖(𝑡)𝜖
𝑏
𝑒 (3.143)

with the element-averaged electrolyte diffusion coefficient, �̄�𝑒 evaluated as,

�̄�𝑒,𝑖(𝑡) = 2.582× 10−9𝑒(−2.856×10−3𝑐𝑒,𝑖(𝑡)) (3.144)

and the average electrolyte concentration for an element, 𝑐𝑒,𝑖(𝑡), given by,

𝑐𝑒,𝑖(𝑡) =

∫︁ 1

0

𝑠⊤𝑖 𝑐𝑒,𝑖(𝑡)𝑑�̄�𝑖 (3.145)

To again construct the full system matrices, the individual weight matrices must be

decomposed as in Section 3.4, such that,

M𝑖 =

∫︁
1

0

⎡⎣ M𝑖
11 M𝑖

12

M𝑖
21 M𝑖

22

⎤⎦𝑑�̄�𝑖 (3.146)
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where the submatrices of M𝑖 are defined as,

M𝑖
𝑗𝑘 =

∫︁
1

0

⎡⎣ s𝑖2𝑗−1s𝑖2𝑘−1 s𝑖2𝑗−1s𝑖2𝑘
s𝑖2𝑗s𝑖2𝑘−1 s𝑖2𝑗s𝑖2𝑘

⎤⎦ 𝑑�̄�𝑖,

𝑗, 𝑘 = 1, 2

(3.147)

and s𝑖𝑗 denotes the 𝑗th element of the vector 𝑠𝑖, as shown in Equation (3.105). Simi-

larly, Equation (3.141) can be written as,

K𝑖 =

∫︁
1

0

⎡⎣ K𝑖
11 K𝑖

12

K𝑖
21 K𝑖

22

⎤⎦𝑑�̄�𝑖 (3.148)

where the submatrices of K𝑖, are defined as,

K𝑖
𝑗𝑘 =

∫︁
1

0

⎡⎣ s𝑖2𝑗−1

𝑑2s𝑖2𝑘−1

𝑑𝑠2𝑖
s𝑖2𝑗−1

𝑑2s𝑖2𝑘
𝑑𝑠2𝑖

s𝑖2𝑗
𝑑2s𝑖2𝑘−1

𝑑𝑠2𝑖
s𝑖2𝑗

𝑑2s𝑖2𝑘
𝑑𝑠2𝑖

⎤⎦ 𝑑�̄�𝑖,

𝑗, 𝑘 = 1, 2

(3.149)

Finally, the new addition to the dynamics because of the mixed basis functions is the

L matrix, as defined in Equation (3.142).

L𝑖 =

∫︁
1

0

⎡⎣ L𝑖11 L𝑖12
L𝑖21 L𝑖22

⎤⎦𝑑�̄�𝑖 (3.150)
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where the submatrices of L𝑖 are defined as,

L𝑖𝑗𝑘 =

∫︁
1

0

⎡⎣ s𝑖2𝑗−1v𝑖𝑘
s𝑖2𝑗v𝑖𝑘

⎤⎦ 𝑑�̄�𝑖,

𝑗, 𝑘 = 1, 2

(3.151)

Using Equations (3.139), (3.146), (3.148), and (3.150) a set of ODEs that describes

the electrolyte dynamics can be written as,

0 =

(︂
M𝑖−1

21

𝑑𝑐𝑖−1
𝑒

𝑑𝑡
+
(︀
M𝑖

11 + M𝑖
22

)︀ 𝑑𝑐𝑖𝑒
𝑑𝑡

+ M𝑖+1
12

𝑑𝑐𝑖+1
𝑒

𝑑𝑡

)︂
− 1

(𝑙′)2
(︀
𝐷𝑖−1K𝑖−1

21 𝑐
𝑖−1
𝑒 +

(︀
𝐷𝑖K𝑖

11 +𝐷𝑖−1K𝑖
22

)︀
𝑐𝑖𝑒 +𝐷𝑖K𝑖+1

12 𝑐
𝑖+1
𝑒

)︀
+

(︂
𝑡0𝑎𝑎

𝜖𝑒

)︂(︀
L𝑖−1
21 𝑗

𝑖−1 +
(︀
L𝑖11 + L𝑖22

)︀
𝑗𝑖 + L𝑖+1

12 𝑗
𝑖+1
)︀

(3.152)

where 𝑐𝑖𝑒 and 𝑗𝑖 denote the states corresponding to 𝑐𝑒(𝑡) and 𝑗*(𝑡), respectively, de-

fined as in Equations (3.106) and (3.108). The equation for the electrolyte dynamics,

Equation (3.139), can be combined in vector form as,

0 = M
𝑑𝑐𝑒(𝑡)

𝑑𝑡
− 1

(𝑙′)2
K𝑐𝑒(𝑡)−

𝑡0𝑎𝑎

𝜖𝑒
L𝑗*(𝑡) (3.153)

where the full system integration matrix, M ∈ R2𝑁×2𝑁 , is defined by,

M =

⎡⎢⎢⎢⎢⎢⎣
M1

11 M1
12 0 0

M1
21 M1

22 + M2
11 M2

12 0

0 M2
21

. . . M𝑁
12

0 0 M𝑁−1
21 M𝑁

22

⎤⎥⎥⎥⎥⎥⎦ (3.154)
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while the matrix, K ∈ R2𝑁×2𝑁 , is defined by,

K =

⎡⎢⎢⎢⎢⎢⎣
𝐷1K1

11 𝐷1K1
12 0 0

𝐷1K1
21 (𝐷1K1

22 +𝐷2K2
11) 𝐷2K2

12 0

0 𝐷2K2
21

. . . 𝐷𝑁K𝑁
12

0 0 𝐷𝑁−1K𝑁−1
21 𝐷𝑁K𝑁

22

⎤⎥⎥⎥⎥⎥⎦ (3.155)

and finally, the input matrix, 𝐿 ∈ R2𝑁×𝑁 , is defined by,

L =

⎡⎢⎢⎢⎢⎢⎣
L1
11 L1

12 0 0

L1
21 (L1

22 + L2
11) L2

12 0

0 L2
21

. . . L𝑁12

0 0 L𝑁−1
21 L𝑁22

⎤⎥⎥⎥⎥⎥⎦ (3.156)

In summary, Equation (3.139), which describes the ODE counterpart of the electrolyte

dynamics, can be rewritten as,

𝑑𝑐𝑒(𝑡)

𝑑𝑡
=

1

(𝑙′)2
M−1K𝑐𝑒(𝑡) +

𝑡0𝑎𝑎

𝜖𝑒
M−1L𝑗*(𝑡) (3.157)

Note that the K matrix must contain the boundary conditions listed in Equations

(3.134) – (3.136). The final result is a MIMO system, for estimation as defined in

Chapter 4.

3.5.4 Update to Butler-Volmer Kinetics

The final piece of the model that needs to be addressed is the algebraic constraint of

the Butler-Volmer kinetics. A weight vector is defined using the principles of Gaussian

quadrature [1], which allows the definite integral of a function to be approximated as

a sum of values defined at specific points, such that,

∫︁ 1

−1

𝑓(𝑥) ≈
𝑛∑︁
𝑖=1

𝜔𝑖𝑓(𝑥𝑖) (3.158)
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choosing weights, 𝜔𝑖 = 1, the points within the function, 𝑥𝑖, can be chosen as roots

to the to Legendre polynomial,

0 =
𝑑

𝑑𝑥

[︂
(1− 𝑥2) 𝑑

𝑑𝑥
𝑃𝑛(𝑥)

]︂
+ 𝑛(𝑛+ 1)𝑃𝑛(𝑥) (3.159)

For 𝑛 = 4, which is the number of points for an element using the polynomial basis

function of Equation (3.91), the Legendre polynomial is defined as,

𝑃𝑛(𝑥) =
35𝑥4 − 30𝑥2 + 3

8
(3.160)

This is not entirely suitable, however, as the interval is calculated over [−1, 1], and

the desired interval for any element is [0, 1]. Therefore, the roots of Equation (3.160),

defined as �̃�, can be shifted to the desired roots, 𝑤, using,

𝑤 =
1 + �̃�

2
(3.161)

The desired roots, 𝑤, on the interval [0,1] are calculated as,

𝑤 =

⎡⎢⎢⎢⎢⎢⎢⎣
0.0694

0.3300

0.6700

0.9306

⎤⎥⎥⎥⎥⎥⎥⎦ (3.162)

Using this weight vector, 𝑤, a subsequent weight matrix is defined, for the purposes

of approximating the integral of a pseudostate by way of the Legendre-Gaussian

quadrature weight vector established in Equation (3.162),

∫︁
𝜃𝑖(�̄�𝑖, 𝑡)𝑑�̄�𝑖 ≈ 𝑠⊤𝑖

⃒⃒
�̄�𝑖=𝑤

𝜃𝑖(𝑡) (3.163)

Where, for convenience, the weight matrix is defined as,

W1 = 𝑠⊤𝑖
⃒⃒
�̄�𝑖=𝑤

(3.164)
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Additionally, another weight matrix must be established to approximate the double

integral of a pseudostate, such that,

∫︁ ∫︁
𝜃𝑖(�̄�𝑖, 𝑡)𝑑�̄�𝑖𝑑�̄�𝑖 ≈

[︂∫︁ �̄�𝑖

0

𝑠⊤𝑖 𝑑�̄�𝑖

]︂⃒⃒⃒⃒
�̄�𝑖=𝑤

𝜃𝑖(𝑡) (3.165)

The resulting integration weight matrix, W2, is defined as,

W2 =

[︂∫︁ �̄�𝑖

0

𝑠⊤𝑖 𝑑�̄�𝑖

]︂⃒⃒⃒⃒
�̄�𝑖=𝑤

(3.166)

These matrices will aid in the definition of the terms necessary for constraining the

Butler-Volmer kinetics. In the interest of integrating the solid potential, another

matrix is defined using the definite integral of 𝑠𝑖,∫︁ 1

0

∫︁ �̄�𝑖

0

𝑠⊤𝑖 𝑑�̄�𝑖𝑑�̄�𝑖 =
[︁
𝑞11 𝑞12 𝑞13 𝑞14

]︁
∫︁ 1

0

𝑠⊤𝑖 𝑑�̄�𝑖 =
[︁
𝑞21 𝑞22 𝑞23 𝑞24

]︁ (3.167)

Q± =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞11 𝑞12 𝑞13 𝑞14 0 0 · · · 0 0 0 0

𝑞21 𝑞22 𝑞23 𝑞24 0 0 · · · 0 0 0 0

0 0 𝑞11 𝑞12 𝑞13 𝑞14 · · · 0 0 0 0

0 0 𝑞21 𝑞22 𝑞23 𝑞24 · · · 0 0 0 0

0 0 0 0 𝑞11 𝑞12 · · · 0 0 0 0

0 0 0 0 𝑞21 𝑞22 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · 𝑞13 𝑞14 0 0

0 0 0 0 0 0 · · · 𝑞23 𝑞24 0 0

0 0 0 0 0 0 · · · 𝑞11 𝑞12 𝑞13 𝑞14

0 0 0 0 0 0 · · · 𝑞21 𝑞22 𝑞23 𝑞24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.168)

Q± is used to integrate the solid potential for either volume, and because values for

one of the nodes are known due to boundary conditions Q± ∈ R2(𝑁±−1)×2𝑁± , where

𝑁± is the number of nodes in either volume. Conversely, another weight matrix is
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defined of the form,

P± =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

−1 −1 1 0 0 0

0 −1 0 1 0 0

0 0 −1 −1 1 0

0 0 0 −1 0 1

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.169)

for P± ∈ R2(𝑁±−1)×2𝑁± , representing the inverse of a second derivative weighting

matrix.

It is possible to transition between the linear and polynomial bases using Galerkin

collocation, and for the purposes of calculating the constraint to a higher accuracy,

the linear bases are translated into the polynomial base using the expression,

𝑠⊤𝑖 𝜃𝑖(𝑡) = 𝑣
⊤
𝑖 𝜃

*
𝑖 (𝑡)∫︁

𝑠𝑖𝑠
⊤
𝑖 𝑑�̄�𝑖𝜃𝑖(𝑡) =

∫︁
𝑠𝑖𝑣

⊤
𝑖 𝑑�̄�𝑖𝜃

*
𝑖 (𝑡)

M𝜃𝑖(𝑡) = L𝜃*𝑖 (𝑡)

𝜃𝑖(𝑡) = M−1L𝜃*𝑖 (𝑡)

(3.170)

Given that the molar flux, 𝑗*(𝑡), and the solid electrode states, 𝑐*𝑠(𝑡) and 𝑞*(𝑡), only

pertain to the space outside of the separator, polynomial approximations can be

constructed for any appropriate pseudostate relative to the anode or cathode using

full volume transition matrices, such that,

𝜃±(𝑡) = M−1
± L±𝜃

*
±(𝑡) (3.171)

where M± and L± are constructed in a similar fashion to that shown in Equations

(3.154) and (3.156), respectively.

The next step is to establish the solid potential, 𝜑±
𝑠 ∈ R2𝑁± , for both volumes.

77



Using an initial guess from a solver, the vector can be constructed as,

𝜑±
𝑠,1 = 𝜑±

𝑠,0

𝜑±
𝑠,2 = −

𝐼𝑙′

𝜎±

𝜑±
𝑠,𝑗 = P−1

±

[︃
𝑎±𝐹 (𝑙′)2

𝜎± Q±M−1
± L±𝑗

*
± + 𝐶±

]︃ (3.172)

for 𝑗 ∈
[︁
3 · · · 2𝑁±

]︁
, and where the integration constant, 𝐶±, is defined as,

𝐶± =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜑±
𝑠,0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎦ (3.173)

for 𝐶± ∈ R2(𝑁±−1). Subsequently, this vector is expanded to four collocation points

per element for 𝑖 ∈
[︁
1 · · · 𝑁± − 1

]︁
, shown in Equation (3.174).

𝜑±
𝑠𝛿,𝑗 =

𝑎±𝐹 (𝑙′)2

𝜎± W2𝑗
±
𝑘 + 𝜑±

𝑠,2(𝑖−1)+2𝑤 + 𝜑±
𝑠,2(𝑖−1)+1

[︁
1 1 1 1

]︁⊤
(3.174)

where the subscripts denote a subset of vector elements as 𝑗 ∈
[︁
4(𝑖− 1) + 1 · · · 4𝑖

]︁
,

𝑘 ∈
[︁
2(𝑖− 1) + 1 · · · 2(𝑖+ 1)

]︁
, and 𝜑±

𝑠𝛿 ∈ R4(𝑁±−1) are the collocation points

of the solid potential. The polynomial approximation of the molar flux for a volume,

𝑗± ∈ R2𝑁± , is defined as,

𝑗± = M−1
± L±𝑗

*
± (3.175)

The surface concentration for each volume, 𝑐±𝑠𝑠 ∈ R2𝑁± can likewise be defined in the

polynomial space as,

𝑐±𝑠𝑠 = M−1
± L±𝑐

*
𝑠𝑠,± (3.176)

The calculations are continued with an expression for the electrolyte potential of

either volume, 𝜑±
𝑒𝛿 using the same iterative process as Equation (3.174) for 𝑖 ∈[︁

1 · · · 𝑁± − 1
]︁
, at four collocation points per element, shown in Equation
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(3.178). An integration vector is also calculated, as shown in Equation (3.177).

𝑥𝛿,𝑗 = 𝑙′
(︂
(𝑖− 1)

[︁
1 1 1 1

]︁⊤
+ 𝑤

)︂
(3.177)

𝜑±
𝑒𝛿,𝑗 =

− 𝐼

𝜎±𝑥𝛿,𝑗 −
𝜎±

𝜅±
(︀
𝜑±
𝑠𝛿,𝑗 − 𝜑

±
𝑠,0

)︀
− 2𝑅𝑇

𝐹

(︀
1− 𝑡±0

)︀ (︀
ln(𝑐±𝑒𝛿,𝑗)− ln(𝑐±𝑒,1)

)︀
+ 𝜑±

𝑒,0

(3.178)

where 𝜑−
𝑒,0 = 0 and 𝜑+

𝑒,0 is defined in Equation (3.179).

𝜑+
𝑒,0 = −

𝐼𝐿−

𝜅−
− 𝜎−

𝜅−

(︁
𝜑−
𝑠,2(𝑁−−1)+1 − 𝜑

−
𝑠,0

)︁
(3.179)

The collocation points of the electrolyte, 𝑐𝑒𝛿,𝑗 ∈ R4, as shown in Equation (3.178), is

defined by Equation (3.180).

𝑐±𝑒𝛿,𝑗 = W1𝑐
±
𝑒,𝑘 (3.180)

Both the molar flux and surface concentration are calculated at the collocation points,

shown in Equations (3.181) and (3.182), respectively.

𝑗±𝛿,𝑗 = W1𝑗
±
𝑘 (3.181)

𝑐±𝑠𝑠𝛿,𝑗 = W1𝑐
±
𝑠𝑠,𝑘 (3.182)

The open-circuit potential is calculated using the collocated surface concentration

values such that,

𝒰±
𝛿,𝑗 = 𝒰

± (︀𝑐±𝑠𝑠𝛿,𝑗)︀ (3.183)

The overpotential is calculated at each of these collocation points as shown in Equa-

tion (3.184).

𝜂±
𝛿,𝑗 = 𝜑

±
𝑠𝛿,𝑗 − 𝜑

±
𝑒𝛿,𝑗 − 𝒰±

𝛿,𝑗 (3.184)

Subsequently, an exchange current density is calculated as,

𝑖±0𝛿,𝑗 = 𝑘±𝑓
(︀
𝑐±𝑒𝛿,𝑗, 𝛼

−)︀⊙ 𝑓 (︀𝑐±𝑠𝑠,𝑚𝑎𝑥 − 𝑐±𝑠𝑠𝛿,𝑗, 𝛼−)︀⊙ 𝑓 (︀𝑐±𝑠𝑠𝛿,𝑗, 𝛼+
)︀

(3.185)
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Where the operator⊙ denotes element-wise multiplication, and the function 𝑓
(︀
𝜃±𝛿 , 𝛼

±)︀
is a function that takes a vector and a scalar as arguments, and produces a vector

with each element, 𝑟, defined as,

𝑓𝑟
(︀
𝜃±𝛿 , 𝛼

±)︀ = (︀𝜃±𝛿,𝑟)︀𝛼±
(3.186)

Using the overpotential and exchange current density, a resulting molar flux for each

volume is calculated at collocation points,

𝑗±𝛿,𝑗 = 2𝑖±0𝛿,𝑗 sinh

(︂
𝐹

2𝑅𝑇
𝜂𝛿,𝑗

)︂
(3.187)

Finally, a residual for each volume is calculated such that,

𝑅±
𝛿,𝑗 = 𝑗

±
𝛿,𝑗 − 𝑗

±
𝛿,𝑗 (3.188)

Two additional residual terms are used to ensure convergence, as shown in Equation

(3.189).

𝑅±
1 =

(︃
𝑁±−1∑︁
𝑖=1

∫︁ 1

0

𝑠⊤𝑖 𝑑�̄�𝑖𝑗
±
𝑘

)︃
± 𝐼(𝑡) (3.189)

which represents the difference of the integral of the molar flux and the current. For

Equations (3.174) – (3.189), the subscripts 𝑗 and 𝑘 denote subsets of vectors as defined

by a top level index 𝑖, such that,

𝑗 ∈
[︁
4(𝑖− 1) + 1 · · · 4𝑖

]︁
𝑘 ∈

[︁
2(𝑖− 1) + 1 · · · 2(𝑖+ 1)

]︁
𝑖 ∈
[︁
1 · · · 𝑁± − 1

]︁ (3.190)

This allows for a looped approach rather than a full-system matrix, to individually

address the nonlinearities. To solve this system, a full residual is created as shown in
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Equation (3.191).

𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑅−
𝛿

𝑅+
𝛿

𝑅−
1

𝑅+
1

⎤⎥⎥⎥⎥⎥⎥⎦ (3.191)

An input vector to the nonlinear solution, 𝑧, is defined as,

𝑧 =

⎡⎢⎢⎢⎣
𝑗*

𝜑+
𝑠,0

𝜑−
𝑠,0

⎤⎥⎥⎥⎦ (3.192)

The solution 𝑧 is varied using the update law,

𝑧𝑘+1 = 𝑧𝑘 +Δ𝑧 (3.193)

where Δ𝑧 for each iteration 𝑘 is calculated as the solution to,

𝜕𝑅

𝜕𝑧𝑘
Δ𝑧 = −𝑅 (3.194)

while the norm of the residual, 𝑅, is greater than an error tolerance, 𝜖𝑅,

‖𝑅‖ ≥ 𝜖𝑅 (3.195)

The resulting molar flux, 𝑗*, is used to drive the dynamics as outlined in Sections

3.5.2 and 3.5.3.

3.5.5 Overall ANCF II Model

The complete ANCF II model is defined by ordinary differential equations in Equa-

tions (3.118), (3.119) and (3.157), with a molar flux approximation, 𝑗*(𝑡), defined by

the minimization of a residual, 𝑅, shown in Equation (3.191), and achieved through

Equation (3.194). Finally, the output voltage is calculated as the resulting difference
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between the solid potential at the current collectors, such that,

𝑉 (𝑡) = 𝜑+
𝑠,0(𝑡)− 𝜑−

𝑠,0(𝑡) (3.196)

These equations define the full ANCF II model, and are implemented with a

similar algorithm to that shown in Algorithm 1. The model validation shown in

Section 3.6 was achieved with simulations using the parameters of Table 3.1.

3.6 Model Validation

Table 3.1: Physical parameter definitions and values used for simulation, based on a
𝐿𝑖𝐶𝑜𝑂2/𝐿𝑖𝐶6 cell.

Symbol Description
Values

Anode Separator Cathode Units

𝑎 Specific interfacial area 7.236𝑒5 — 8.850𝑒5 𝑚−1

𝛼 Ionic transfer coefficient 0.5 — 0.5 —

𝑏 Bruggeman coefficient 0.5 — 0.5 —

𝑐0𝑒 Initial electrolyte concentration 1000 — 1000 𝑚𝑜𝑙 −𝑚−3

𝑐𝑠,𝑚𝑎𝑥 Maximum ionic concentration capacity in the electrode 30555 — 51554 𝑚𝑜𝑙 −𝑚−3

𝐷𝑠 Effective solid electrode diffusion coefficient 1.0𝑒− 14 — 3.9𝑒− 14 𝑚2𝑠−1

𝜖𝑒 Electrolyte volume fraction 0.485 0.724 0.385 —

𝜖𝑓 Binding material volume fraction 0.0326 — 0.0250 —

𝑘 Reaction constant 5.0307𝑒− 11 — 2.3340𝑒− 11 —

𝜅 Electrolyte ionic conductivity coefficient 0.3 — 0.3 Ω−1𝑚−1

𝜅𝑒𝑓𝑓 Effective electrolyte ionic conductivity 𝜅𝑒𝑓𝑓 = 𝜅𝜖𝑏𝑟𝑢𝑔𝑔𝑒 Ω−1𝑚−1

𝐿 Compartment length 88𝑒− 6 25𝑒− 6 80𝑒− 6 𝑚

𝑅𝑝 Solid electrode pseudo-sphere radius 2𝑒− 6 — 2𝑒− 6 𝑚

𝑅𝑆𝐸𝐼 Electrode-electrolyte interphase resistivity 0 — 0 Ω𝑚2

𝜎 Electrode conductivity 100 — 100 Ω−1𝑚−1

𝜎𝑒𝑓𝑓 Effective electrode conductivity 𝜎𝑒𝑓𝑓 = 𝜎(1− 𝜖𝑒 − 𝜖𝑓 ) Ω−1𝑚−1

𝑇 Isothermal temperature 297.15 297.15 297.15 𝐾

𝑡0 Ionic transference number 0.637 — 0.363 —

In this section, the ANCF and ANCF II model were numerically validated, and

their outputs were compared with that from the DualFoil model [38], developed from

the DFN model [15], for a range of charge and discharge rates. The parameters used

for these simulations are shown in Table 3.1, derived from the physical parameters
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of a Lithium Cobalt Oxide cell, 𝐿𝑖𝐶𝑜𝑂2/𝐿𝑖𝐶6. The ANCF and ANCF II results are

also compared with the SPM model mentioned in Section 3.3.3 [54]. For the sake of

completeness, the simulation setup of the SPM is described below.

The implemented SPM model equations are similar to Equations (3.29) - (3.36),

except that a specific solution is defined using volume projection. This manifests in

the solid concentration as,

𝑑𝑐±𝑠 (𝑡)

𝑑𝑡
= ∓ 3

𝐹𝑎±𝐿±𝑅±
𝑝

𝐼(𝑡) (3.197)

defines the bulk solid concentration in each respective volume, and,

𝑑𝑞±(𝑡)

𝑑𝑡
= − 30𝐷±

𝑠(︀
𝑅±
𝑝

)︀2 𝑞±(𝑡)∓ 45

2𝐹𝑎±𝐿±
(︀
𝑅±
𝑝

)︀2 𝐼(𝑡) (3.198)

defines the concentration differential for each solid. The surface concentration is

defined similarly to Eq. (3.56),

𝑐±𝑠𝑠(𝑡) = 𝑐±𝑠 (𝑡) +
8𝑅±

𝑝

35
𝑞(𝑡)∓

𝑅±
𝑝

35𝐹𝑎±𝐿±𝐷±
𝑠

𝐼(𝑡) (3.199)

The Butler-Volmer kinetics of Eq. (3.17) are still valid for each volume, with the

molar flux, 𝑗(𝑥, 𝑡), explicitly defined as

𝑗±(𝑡) = ∓ 𝐼(𝑡)

𝐹𝑎±𝐿± . (3.200)

For the same parameters as shown in Table 3.1, the ANCF model, from Section

3.6.1; the ANCF II model, from Section 3.6.2; the DFN model, and SPM model

as described above were simulated. Four simulations, at different discharge rates of

0.1C, 1C, 2C, and 3C, are shown, in addition to a subset of the Urban Dynamometer

Driving Schedule (UDDS). In order to compare their performances quantitatively, an
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RMS metric of the tracking error was chosen as,

𝐸𝑅𝑀𝑆 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=0

(︂
𝑉𝑠,𝑖 − 𝑉𝑑,𝑖

𝑉𝑑,𝑖

)︂2

(3.201)

where 𝑉𝑑,𝑖 is data obtained from the DualFoil simulation, and 𝑉𝑠,𝑖 denotes the response

from the ANCF, the ANCF II, or the SPM model. Another error metric, Δ𝐸, was

defined as,

Δ𝐸 = 𝐸𝑅𝑀𝑆,𝐴𝑁𝐶𝐹 − 𝐸𝑅𝑀𝑆,𝑆𝑃𝑀 . (3.202)

with the subscripts ANCF and SPM denoting 𝐸𝑅𝑀𝑆 corresponding to the modeling

errors of the ANCF/II, and SPM, respectively.

3.6.1 ANCF Results

Low and Constant Discharge of 0.1C

As can be seen from Figure 3-6, the responses of the ANCF model coincide well with

that of the DFN model. It is also noted that the SPM response agrees quite well with

the DFN model, confirming prior observations [11] [16] that for low discharge rates,

the SPM response is quite accurate. The overall tracking error is quantified in Table

3.2, which shows that the SPM results in a slightly better RMS value compared to

that of the ANCF.
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Figure 3-6: Simulation results on the left for the ANCF model, SPM model, and
DualFoil, at 0.1C for 2.5×104 seconds. Error results are shown to the right, normalized
against the Dualfoil results.

Medium Discharge Rate of 1C Pulses

From Figure 3-7, it is easy to see that the ANCF responses match that of the Du-

alfoil quite closely, except at the discharging and charging limits. In contrast, the

SPM model falls behind in capturing the steady-state values. Table 3.2, once again,

provides a quantitative summary of the RMS errors and peak errors. It can be argued

that at the limits, where the ANCF performs poorly, the reliability of the DualFoil is

also questionable.
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Figure 3-7: Simulation results on the left for the ANCF model, SPM model, and
DualFoil, at 1C for 350 seconds. Error results are shown to the right, normalized
against the Dualfoil results.
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High Discharge Rates of 2C and 3C Pulses

Figures 3-8 and 3-9 show the responses of the ANCF, DualFoil, and SPM models.

It is noted that in both cases, the ANCF maintains the same dramatic improvement

over the SPM, and underscores the main advantage of the ANCF in relation to the

retension of spatiotemporal electrolyte dynamics. All RMS errors are summarized in

Table 3.2.
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Figure 3-8: Simulation results on the left for the ANCF model, SPM model, and
DualFoil, at 2C for 850 seconds. Error results are shown to the right, normalized
against the Dualfoil results.
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Figure 3-9: Simulation results on the left for the ANCF model, SPM model, and
DualFoil, at 3C for 530 seconds. Error results are shown to the right, normalized
against the Dualfoil results.
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UDDS Discharge Profile

Figure 3-10 shows the results of the UDDS profile, as standardized by the EPA. This

UDDS profile is given in terms of vehicle speed, so an approximate model of a car was

derived with respect to the specific current profile necessary to generate such speeds,

under the energy consumption of a given electric motor and drag coefficient.
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Figure 3-10: Simulation results on the left for the ANCF model, SPM model, and
DualFoil, for a subset of the UDDS profile. Error results are shown to the right,
normalized against the Dualfoil results.

3.6.2 ANCF II Results

Low and Constant Discharge of 0.1C

Figure 3-11 shows the results of a low, constant discharge of the ANCF II model cell

at 0.1C, similar to Figure 3-6. It is notable that the simulation maintains a high

accuracy until the nonlinear regime at the end of the time duration, where the SPM

also fails. The errors are shown in Table 3.3.

Medium Discharge Rate of 1C Pulses

Figure 3-12 shows the simulation results of the ANCF II model for 1C pulsing. Sim-

ulation results show excellent matching to the DFN model, while the SPM shows a

lack of sensitivity to higher discharge rates. The ANCF II is more than six times

more accurate than the SPM, as shown in Table 3.3.
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Figure 3-11: Simulation results on the left for the ANCF model, SPM model, and
DualFoil, at 1C for 350 seconds. Error results are shown to the right, normalized
against the Dualfoil results.

High Discharge Rates of 2C and 3C Pulses

Figures 3-13 and 3-14 show a 2C and 3C discharge profile, representing more severe

dynamics to match. It should be noted that the ANCF II performs well for these

simulations as well, but performance accuracy drops similarly to the ANCF model,

while maintaining superior performance to the SPM results. RMS errors are shown

in Table 3.3.

UDDS Discharge Profile

Finally, Figure 3-15 shows the simulation results of the same UDDS subset used for

the ANCF model. Again, this is a standard vehicle simulation profile, that was made

to replicate a vehicle in particular driving conditions, with an electric vehicle motor

consuming power as a function of the amount of force required to overcome drag

effects. RMS error values are shown in Table 3.3.
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Figure 3-12: Simulation results on the left for the ANCF II model, SPM model, and
DualFoil, at 1C for 4000 seconds. Error results are shown to the right, normalized
against the Dualfoil results.
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Figure 3-13: Simulation results on the left for the ANCF II model, SPM model, and
DualFoil, at 2C for 1200 seconds. Error results are shown to the right, normalized
against the Dualfoil results.
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Figure 3-14: Simulation results on the left for the ANCF II model, SPM model, and
DualFoil, at 3C for 1000 seconds. Error results are shown to the right, normalized
against the Dualfoil results.
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Figure 3-15: Simulation results on the left for the ANCF II model, SPM model, and
DualFoil, for a subset of the UDDS profile. Error results are shown to the right,
normalized against the Dualfoil results.
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3.6.3 Model Comparison

Table 3.2: Comparative summary of normalized error for simulation results of the
ANCF model.

C - Rate
ANCF Error (×102) SPM Error (×102) Δ𝐸(×102)

RMS Max RMS Max RMS Max

0.1 3.2842 5.0386 2.4548 3.9937 0.8294 1.0449

1.0 1.1574 8.9171 6.4868 9.0207 -5.3294 -0.1036

2.0 1.5781 15.1420 9.4397 17.0540 -7.8616 -1.9120

3.0 2.3768 21.0590 12.9130 25.9120 -10.5362 -4.8530

Table 3.3: Comparative summary of normalized error for simulation results of the
ANCF II model.

C - Rate
ANCF II Error (×102) SPM Error (×102) Δ𝐸(×102)

RMS Max RMS Max RMS Max

0.1 2.3638 10.3581 2.7109 17.5064 -0.34714 -7.1483

1.0 0.6709 4.3581 4.8207 9.1706 -4.1498 -4.8125

2.0 1.5262 9.2496 8.6985 18.6971 -7.1723 -9.4475

3.0 2.9854 17.3983 13.4142 33.9896 -10.4287 -16.5913

It was anticipated that because of the fewer degrees of freedom of the ANCF II, its

performance relative to the ANCF model would be hindered at more severe discharge

rates. It is apparent from a comparison of Tables 3.2 and 3.3 that the ANCF and

ANCF II models outperform the SPM in nearly all cases. At low discharge, namely

0.1C, the ANCF II is better than the ANCF model, seen in Figures 3-6 and 3-11, with

a difference in RMS error of 9.2mV. The ANCF II actually continues to outperform

the ANCF model at moderate to high discharge rates, specifically at 1C, as seen in

Figures 3-7 and 3-12, with a difference in RMS error of 4.9mV; and 2C, as seen in

Figures 3-8 and 3-13, with a difference in RMS error of 0.52mV. The anticipated

performance degradation is witnessed at the highest discharge rate simulated, 3C,
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shown in Figures 3-9 and 3-14, but the ANCF model only performs marginally better

than the ANCF II model, with an RMS error 6.1mV better, but a higher maximum

error, which is consistent throughout the simulations, with the exception of the results

of the 0.1C discharge profile.

The ANCF II performs with consistent, and frequently better results, than the

ANCF, but reduces the total number of states significantly. More importantly, the

algebraic constraint is reduced, which allows for a more tractable problem in Section

4.3.2. This is critically important, as the error injected through the unknown inputs

of the model will distort the results of the full-scale observer. This will be discussed

more in Chapter 4. The benefit of fewer states and constraints, while maintaining

model performance, allows for the adaptive observers discussed in Chapter 4 to be

built around the ANCF II model.
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Chapter 4

Adaptive Observers

The adaptive observer is a well established concept in literature, developed over

decades of research [10] [29] [37], with a wide variety of system identification ap-

plications. The purpose is to be able to identify both the states and parameters of a

system, using a non-minimal representation. There are several instances of this tech-

nique, but the focus will be limited to a handful of techniques and novel utilizations

relevant to this field.

Section 4.1 describes the vector-regressor adaptive observer, as presented in lit-

erature [37]. This is the basic form of the adaptive observer, and the results of its

application will be built on in further sections. By establishing the concepts of the

vector-regressor form, the techniques can be adjusted and applied to more advanced

and stable iterations of the adaptive observer. Section 4.2 discusses one such attempt

at making a more stable, reliable adaptive observer, using a matrix regressor instead

of the aforementioned vector. Conventionally, this is achieved by filtering the input

and output of the system, and relying on the the linear nature of the observed system

to create a faster, more stable converging observer to the real parameters.

Finally, Section 4.3 discusses the process of applying these observers, in various

novel forms, to the ANCF II model presented in Chapter 3. This includes a spatio-

temporal version of the matrix regressor adaptive observer, for purposes of observing

the solid electrode systems; a matrix regressor adaptive observer using multiple filters

with cascading poles, for purposes of estimating the molar flux; and a novel nonlinear
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update law for the purposes of estimating the electrolyte system. These observers

create the initial foundation for a full-scale observer using the ANCF II, and the

process and limitations of full-scale implementation will be discussed in Section 4.4.

4.1 Vector-Regressor Adaptive Observers

This section will discuss the establishment of a vector-regressor adaptive observer, as

presented in literature [37]. Its purpose is to estimate both the states and parameters

that define a system, using measurable inputs and outputs. This is achieved by

creating an equivalent, non-minimal system, and using an update law that ensures

stability, in a Lyapunov sense. Then with sufficient persistent excitation, the system

will converge to the real states and parameters. The convergence of these parameters

is non-trivial, however, as the observer may take the form of an equivalent system

that is able to generally replicate the frequency response of the system for a certain

bandwidth, but may not be an accurate result.

Additionally, there are several forms of the adaptive observer, but this section

will focus exclusively on the non-minimal representation which fully defines the poles

and zeros of the transfer function. It is not possible to distinguish between the input

coefficients and the output coefficients, but only their manifestation in the transfer

function as transmission zeros. Subsequently, the parameters of the system matrix

manifest in both the zeros and poles, but the poles of the system are exclusively a

function of those system parameters. This knowledge is leveraged in several ways in

subsequent sections.

4.1.1 Equivalent System

To begin, a generalized single input, single output (SISO) state-space system is de-

fined,

�̇� = 𝐴𝑥(𝑡) +𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶⊤𝑥(𝑡)
(4.1)
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for which a transfer function can also be defined,

𝐺𝑝(𝑠) =
𝑌 (𝑠)

𝑈(𝑠)
= 𝐶⊤(𝑠I− 𝐴)−1𝐵

=
𝑏1𝑠

𝑘−1 + . . .+ 𝑏𝑘
𝑠𝑘 + 𝑎1𝑠𝑘−1 + . . .+ 𝑎𝑘

(4.2)

The purpose then is to take an arbitrary observer system, and match the frequency

response to the results of the system in question. The equivalent system is defined

as,

�̇�𝑢 = 𝐹𝜔𝑢 + 𝑔𝑢(𝑡)

�̇�𝑦 = 𝐹𝜔𝑦 + 𝑔𝑦(𝑡)
(4.3)

where the output of the equivalent system is defined as,

𝑦(𝑡) = 𝜃⊤𝑢 𝜔𝑢 + 𝜃⊤𝑦 𝜔𝑦 (4.4)

Equation (4.4) can be succinctly defined as,

𝑦(𝑡) = 𝜃⊤𝜔 (4.5)

where,

𝜃 =

⎡⎣ 𝜃𝑢

𝜃𝑦

⎤⎦ (4.6)

and,

𝜔 =

⎡⎣ 𝜔𝑢

𝜔𝑦

⎤⎦ (4.7)

The full equivalent system can be defined in the frequency domain as,

𝑌 (𝑠) = 𝜃⊤𝑢Ω𝑢(𝑠) + 𝜃⊤𝑦 Ω𝑦(𝑠)

𝑌 (𝑠) = 𝐺𝑢(𝑠)𝑈(𝑠) +𝐺𝑦(𝑠) + 𝑌 (𝑠)

𝑌 (𝑠)

𝑈(𝑠)
=

𝐺𝑢(𝑠)

1−𝐺𝑦(𝑠)

(4.8)
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If the regressor filter is defined in observer-canonical representation, where,

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 . . . 0
...

... . . . ...

0 0 . . . 1

−𝑎𝑓,𝑘 −𝑎𝑓,𝑘−1 . . . −𝑎𝑓,1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.9)

𝑔 =
[︁
0 · · · 0 1

]︁⊤
(4.10)

it can be shown that the full equivalent system transfer function is defined as,

𝑌 (𝑠)

𝑈(𝑠)
=

𝑏𝑢,1𝑠
𝑘−1 + . . .+ 𝑏𝑢,𝑘

𝑠𝑘 + (𝑎𝑓,1 − 𝑏𝑦,1)𝑠𝑘−1 + . . .+ (𝑎𝑓,𝑘 − 𝑏𝑦,𝑘)
(4.11)

where,

𝜃𝑢 =
[︁
𝑏𝑢,𝑘 . . . 𝑏𝑢,1

]︁⊤
𝜃𝑦 =

[︁
𝑏𝑦,𝑘 . . . 𝑏𝑦,1

]︁⊤ (4.12)

Subsequently, an estimated system is defined as,

˙̂𝜔𝑢 = 𝐹�̂�𝑢 + 𝑔𝑢(𝑡)

˙̂𝜔𝑦 = 𝐹�̂�𝑦 + 𝑔𝑦(𝑡)
(4.13)

and an output,

𝑦(𝑡) = 𝜃⊤�̂� (4.14)

The error in the regressor, or sensitivity error, is defined as,

�̃� = �̂� − 𝜔 (4.15)

The time derivative of the sensitivity error can be evaluated by subtracting Equation
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(4.13) from Equation (4.3), yielding,

˙̃𝑤 = 𝐹�̃� (4.16)

where,

𝐹 =

⎡⎣ 𝐹 0

0 𝐹

⎤⎦ (4.17)

Therefore, if 𝐹 is any negative definite matrix, then �̃� → 0 and �̂� → 𝜔, as 𝑡 →

∞. Once the sensitivity error goes to zero, the system need only to replicate the

parameters, 𝜃, to match the original system, such that 𝜃 → 𝜃 and 𝑦(𝑡) → 𝑦(𝑡). This

motivates the update laws described in Section 4.1.2. Figure 4-1 shows the observer

in parallel with the original system, 𝐺𝑝(𝑠), with estimated equivalent systems, 𝐺𝑢(𝑠)

and 𝐺𝑦(𝑠).

∑︀
�̂�𝑢(𝑠) �̂�𝑦(𝑠)

𝐺𝑝(𝑠)
𝑢(𝑡) 𝑦(𝑡)

𝑦(𝑡)

Figure 4-1: Block diagram of the adaptive observer. By updating the parameters of
�̂�𝑢(𝑠) and �̂�𝑦(𝑠), the frequency response of the original system can be replicated.

4.1.2 Update Laws

An update law must be defined to ensure stability of the observer, in a Lyapunov

sense. A candidate Lyapunov function can be defined as,

𝑉 =
1

2
𝜃⊤𝜃 (4.18)
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where,

𝜃 = 𝜃 − 𝜃 (4.19)

Equation (4.18) is positive semi-definite, as it resembles the description of the kinetic

energy of a mechanical system. The goal, then, is to ensure its time derivate is

negative semi-definite, and stability will be ensured. The time derivative of Equation

(4.18) is defined as,

�̇� =
1

2

(︁
˙̃𝜃⊤𝜃 + 𝜃⊤ ˙̃𝜃

)︁
= 𝜃⊤ ˙̃𝜃

= 𝜃⊤
(︁
˙̂
𝜃 − 𝜃

)︁
= 𝜃⊤

˙̂
𝜃

(4.20)

where 𝜃 is the statically defined parameters of the equivalent system, and as such,

𝜃 = 0. As it is not explicitly possible to define the error in the parameters, 𝜃, an

adaptive law for parameter learning, ˙̂
𝜃, must be devised to ensure sign definiteness

in Equation (4.20). One proposed solution [37] is to use the update law as shown in

Equation (4.21).

˙̂
𝜃 = −Γ�̂�𝑒

Γ > 0
(4.21)

where the error, 𝑒, is defined as,

𝑒 = 𝑦(𝑡)− 𝑦(𝑡) (4.22)

If it is assumed, as shown in Equation (4.16), that �̃� → 0, then the Lyapunov candi-

date in Equation (4.20) reduces to,

�̇� = −
(︁
𝜃⊤�̂�

)︁2
(4.23)
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It should be noted that Equation (4.23) is negative semi-definite, which ensures sta-

bility. However, this does not guarantee that 𝜃 → 𝜃. Only under persistent excitation

is this goal achieved.

4.2 Matrix-Regressor Adaptive Observers

It has been shown that the vector-regressor adaptive observer is successful in param-

eter identification under persistent excitation as 𝑡→∞. However, these are difficult

conditions to ensure, and an observer with faster convergence in a more diverse in-

put regime is desired. To this end, the matrix-regressor adaptive observer has been

proposed in literature [27] [26] [24]. The concept, generally speaking, is to increase

the density of the regressor information by constructing a full-rank regressor matrix,

called a regressor bank, that uses the same linear parameters to produce an output

as the vector-regressor adaptive observer.

By ensuring the regressors are full-rank, but maintain the same relationship to the

parameter set, faster convergence can be observed [24]. As will be shown in Section

4.3.1, there are novel options for ways to create a full rank matrix, while also reducing

the need for additional filtration elements.

4.2.1 Regressor Bank

Again, an equivalent system, similar to Equation (4.3) is constructed such that,

�̇�𝑢,0 = 𝐹𝜔𝑢,0 + 𝑔𝑢0(𝑡)

�̇�𝑦,0 = 𝐹𝜔𝑦,0 + 𝑔𝑦0(𝑡)

𝑦0(𝑡) = 𝜃⊤𝜔0

(4.24)

where,

𝜔0 =

⎡⎣ 𝜔𝑢,0

𝜔𝑦,0

⎤⎦ (4.25)
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The construction of the matrix-regressor adaptive observer is fundamentally based

on identifying linearly independent regressors that can define a measurable output.

A convenient way is to use a first order filter, but the designer is not limited on this

basis. Under this conventional premise, a filtered input can be defined, such that,

𝑢1(𝑡) = 𝐺(𝑠)𝑢0(𝑡) (4.26)

and a filtered output,

𝑦1(𝑡) = 𝐺(𝑠)𝑦0(𝑡) (4.27)

The applied filter 𝐺(𝑠) is any arbitrary stable filter, but for simplicity, is defined as a

first order filter,

𝐺(𝑠) =
𝛽

𝑠+ 𝛽
(4.28)

Using Equations (4.26) and (4.27), a filtered equivalent system is defined as,

�̇�𝑢,1 = 𝐹𝜔𝑢,1 + 𝑔𝑢1(𝑡)

�̇�𝑦,1 = 𝐹𝜔𝑦,1 + 𝑔𝑦1(𝑡)

𝑦1(𝑡) = 𝜃⊤𝜔1

(4.29)

By superposition, a filtered regressor can be defined as,

𝜔1 = 𝐺(𝑠)𝜔0 (4.30)

Subsequently, by iterating on multiple inputs and outputs, any arbitrary number of

filtered regressors can be defined with a focus on specific frequency content, such that,

𝜔𝑖 = 𝐺𝑖(𝑠)𝜔𝑖−1 (4.31)

for 𝜔𝑖 ∈ R𝑛. These filters are linearly independent, and therefore each of the resulting

regressors, 𝜔𝑖, are linearly independent, as well. Figure 4-2 shows the frequency

response of these filters, and it should be noted that the crossover frequency remains
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the same for each, but the attenuation grows as the order of the filter increases.
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Figure 4-2: Frequency response of the iterative filters for 𝛽 = 1, 𝑛 = 10.

Then by using the filtered regressors in Equation (4.31), a full-rank matrix can be

defined as a regressor bank, Ω, such that,

Ω =
[︁
𝜔0 · · · 𝜔𝑛−1

]︁
(4.32)

where a matrix-regressor output would take the form,

𝑌 = Ω⊤𝜃

𝑌 =
[︁
𝑦0(𝑡) · · · 𝑦𝑛−1(𝑡)

]︁⊤ (4.33)

Generally, any set of linearly independent regressors that satisfy the relationship

of Equation (4.33) can be chosen to construct the regressor bank, Ω, as shown in

Equation (4.32), and need not be restricted by Equation (4.31). Subsequently, the

estimated system is defined similarly to Equation (4.32), such that,

̂︀Ω =
[︁
�̂�0 · · · �̂�𝑛−1

]︁
(4.34)
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where an equivalent output vector can be defined as,

̂︀𝑌 = ̂︀Ω⊤𝜃 (4.35)

Using a formation similar to Equation (4.21), an update law is devised, such that,

˙̂
𝜃 = −Γ̂︀Ω𝐸 (4.36)

where the error, 𝐸, is defined as,

𝐸 = ̂︀𝑌 − 𝑌 (4.37)

It has been shown that this implementation of an adaptive observer exhibits rapid

convergence [24], faster than the vector-regressor form described in Section 4.1.

4.2.2 Filter Transformations

One of the nebulous elements of designing adaptive observers is the specific form that

the filter, 𝐹 , and input vector, 𝑔, take in the regressor dynamics of Equation (4.24).

Work in establishing design laws has been a focus of literature [23] [24], and will be

established in the section for clarity in the design of observers found later. Notionally,

an observer designer will have some a-priori knowledge of the system, namely in the

order of magnitude of the poles and zeros. Additionally, it has been noted that the

convergence of parameters to their true values is improved when the parameters are

all of the same order, such that the error in one is not offset in the output of the

estimated system by the minimal error of a larger parameter. It is observed that

the parameter of larger magnitude will oscillate about its true value, in an effort to

correct the error in the output, while the parameter of smaller value will essentially

be neglected because of its reduced role in the output dynamics. Frankly speaking,

this does not matter if the purpose of the observer is to produce the same results

as a measured system, but in the interest of accurately measuring parameters, this

effect matters greatly. Therefore, in the interest of alleviating this effect, a strategy
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for designing the filter system will be established.

Again, an equivalent system is defined as in Equation (4.24), such that,

�̇�𝑢,0 = 𝐹0𝜔𝑢,0 + 𝑔0𝑢0(𝑡)

�̇�𝑦,0 = 𝐹0𝜔𝑦,0 + 𝑔0𝑦0(𝑡)

𝑦0(𝑡) = 𝜃⊤0 𝜔0

(4.38)

where the filter, 𝐹0, is a stable, negative definite matrix, and Equation (4.38) is

equivalent to the full system,

�̇� = 𝐴𝑥+𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶⊤𝑥
(4.39)

Additionally, in Equation (4.38), the untransformed parameters, 𝜃0, are defined as,

𝜃0 =

⎡⎣ 𝜃𝑢,0

𝜃𝑦,0

⎤⎦ (4.40)

In the interest of simplicity, the system shown in Equation (4.39) is defined in ob-

servable canonical form [17], such that,

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑎1 1 0 . . . 0

−𝑎2 0 1 . . . 0
...

...
... . . . ...

−𝑎𝑘−1 0 0 . . . 1

−𝑎𝑘 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.41)

𝐵 =
[︁
𝑏1 · · · 𝑏𝑘

]︁⊤
(4.42)

𝐶 =
[︁
1 · · · 0

]︁⊤
(4.43)

The notional plant, as mentioned above, is defined similarly in observable canonical
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form, such that,

̂︀𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣
−�̂�1 1 . . . 0

...
... . . . ...

−�̂�𝑘−1 0 . . . 1

−�̂�𝑘 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦ (4.44)

̂︀𝐵 =
[︁
�̂�1 · · · �̂�𝑘

]︁⊤
(4.45)

𝐶 =
[︁
1 · · · 0

]︁⊤
(4.46)

Therefore, the designer can remove the arbitrary task of picking the poles of the

regressor filter, 𝐹0, by locating the poles initially at the notional poles of the system,

such that,

𝐹0 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 . . . 0
...

... . . . ...

0 0 . . . 1

−𝑎𝑓,𝑘 −𝑎𝑓,𝑘−1 . . . −𝑎𝑓,1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.47)

𝑔0 =
[︁
0 · · · 1

]︁⊤
(4.48)

and the poles of the filter, 𝐹0, are defined as,

𝑎𝑓,𝑖 = �̂�𝑖 (4.49)

It is important to note that the filter, 𝐹0, must be a negative definite matrix, so any

unstable or marginally stable pole, �̂�𝑖 ≤ 0, must be replaced with a small value, such

as 𝑎𝑓,𝑖 = 𝜖, where 𝜖 = 1𝑒− 3, for example.

Using this initial step of the formulation, a Kalman filter gain is designed to

reject the erroneous frequency content of the regressors. The process follows the

basic Kalman filter design [17], and will be outlined bellow. The Kalman filter design
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proceeds as a general system,

�̇� = 𝐴𝑥+𝐵𝑢+𝐺𝑤

𝑦 = 𝐶𝑥+𝐷𝑢+𝐻𝑤 + 𝑣
(4.50)

where 𝑤 and 𝑣 are noise introduced into the system from input and output measure-

ments. These values are defined such that,

𝐸[𝑤] = 𝐸[𝑣] = 0

𝐸[𝑤𝑤⊤] = 𝑄

𝐸[𝑣𝑣⊤] = 𝑅

𝐸[𝑤𝑣⊤] = 𝑁

(4.51)

where 𝐸[·] is the expected value function, and 𝑄, 𝑅 and 𝑁 are the arbitrary values of

that function. For the purposes of the design of the filter, 𝐹0, a ratio of these values

is defined as,

𝜎 =
𝑄

𝑅
(4.52)

where the designer has a choice of this ratio, with a higher 𝜎 rejecting more error.

Then, a covariance matrix of the error, 𝑃 , is defined such that,

𝑃 = lim
𝑡→∞

𝐸
[︁
{𝑥− �̂�} {𝑥− �̂�}⊤

]︁
(4.53)

and a Kalman gain, 𝐿, is defined as the solution to an algebraic Riccati equation at

steady-state,

𝐿 = (𝑃𝐶⊤ + �̄�)�̄�−1 (4.54)

where,

�̄� = 𝑅 +𝐻𝑁 +𝑁⊤𝐻⊤ +𝐻𝑄𝐻⊤ (4.55)

�̄� = 𝐺
(︀
𝑄𝐻⊤ +𝑁

)︀
(4.56)
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for 𝐻 = 0 and 𝐺 = 0. Using the gain vector, 𝐿, the filter, 𝐹0, can be altered by,

𝐹0 =
(︁ ̂︀𝐴− 𝐿𝐶⊤

)︁⊤
(4.57)

where the input vector, 𝑔0, remains unaltered,

𝑔0 =
[︁
1 · · · 0

]︁⊤
(4.58)

The next step is to normalize the filters to scale the signals, using a steady-state

Riccati equation to define a scaling matrix, 𝑃0, such that,

𝐹0𝑃0 + 𝑃0𝐹
⊤
0 + 𝑔0𝑔

⊤
0 = 0 (4.59)

where 𝐹0 is as defined in Equation (4.57) and 𝑔0 is as defined in Equation (4.58). 𝑃0 is

a full-rank matrix that can be decomposed into its eigenvalues, 𝐷, and eigenvectors,

𝑉 , such that,

𝑃0 = 𝑉 𝐷𝑉 ⊤ (4.60)

An input transformation matrix, 𝑇𝑢, is then defined as,

𝑇𝑢 = 𝐷− 1
2𝑉 (4.61)

Subsequently, an additional scaling matrix, 𝑃𝑝, is defined using the steady-state Ric-

cati equation,

0 = ̂︀𝐴𝑃𝑝 + 𝑃𝑝 ̂︀𝐴⊤ + ̂︀𝐵 ̂︀𝐵⊤ (4.62)

Using 𝑃𝑝, a scalar scaling factor, 𝑝, is defined as,

𝑝 =
1√︀

𝐶⊤𝑃𝑝𝐶
(4.63)

This scaling factor is then applied to the input transformation matrix, 𝑇𝑢, to create
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an output transformation matrix, 𝑇𝑦, such that,

𝑇𝑦 = 𝑝𝑇𝑢 (4.64)

Finally, these transformations are applied to the filters and input vectors for the

purposes of normalization,

𝐹𝑢 = 𝐹𝑦 = 𝑇𝑢𝐹0𝑇
−1
𝑢 (4.65)

𝑔𝑢 = 𝑇𝑢𝑔0 (4.66)

𝑔𝑦 = 𝑇𝑦𝑔0 (4.67)

The filters, 𝐹𝑢 and 𝐹𝑦 maintain negative definiteness, while also retaining the same

poles, which eases the final calculation of the system parameters. However, the input

vectors, 𝑔𝑢 and 𝑔𝑦, are normalized such that the zeros are of the same scale. The final

adaptive observer system is defined as,

�̇�𝑢,𝑖 = 𝐹𝑢𝜔𝑢,𝑖 + 𝑔𝑢𝑢𝑖(𝑡)

�̇�𝑦,𝑖 = 𝐹𝑦𝜔𝑦,𝑖 + 𝑔𝑦𝑦𝑖(𝑡)

𝑦𝑖(𝑡) = 𝜃⊤𝜔𝑖

(4.68)

The transformed parameters, 𝜃, are defined as,

𝜃 =

⎡⎣ 𝑇−⊤
𝑢 𝜃𝑢,0

𝑇−⊤
𝑦 𝜃𝑦,0

⎤⎦ (4.69)

where 𝜃𝑢,0 and 𝜃𝑦,0 are defined as shown in Equation (4.40), for use in Equation

(4.38). The same matrix regressor form, shown in Equations (4.32) and (4.33), is

still applicable, with an update law as defined by Equation (4.36) in the estimated

system.
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4.3 Adaptive Observers for the ANCF II

The adaptive observers established in Sections 4.1 and 4.2 are now applied to the

ANCF II model as discussed in Chapter 3. It will be important to consider how the

adaptive observers can be altered to leverage the a-priori knowledge of the numerical

structure, but not the specific values of model parameters, to boost their speed of

learning. Figure 4-3 shows the model depicted in a novel block diagram formation.

The majority of parameters, relating to the SoH, and states, relating to the SoC,

∑︀
𝑓𝒰

𝑓𝜑𝑒

𝑓𝐵𝑉𝐾
𝐺𝑝(𝑠)

𝐼(𝑡)

𝑉 (𝑡)

𝑗*𝑗*

𝑐*𝑠

𝑞*

𝑐𝑒

𝜑𝑒

𝒰

𝜑𝑠

𝜂

Figure 4-3: Block diagram of the ANCF II model, showing areas for practical appli-
cation of the adaptive observers with respect to the concentration dynamics, 𝐺𝑝(𝑠).

are located in the concentration dynamics, 𝐺𝑝(𝑠), which also lends itself to the linear

structure of the observers described above. Therefore, to construct observers for these

dynamics is the key foundational beginning of an ABMS. The challenge is to make

these observers stable and rapidly converging, such that minimal error propagates

into the nonlinear portions of the model. To this end, the observers in this thesis

will make assumptions about the measurable inputs and outputs, as described in

Sections 4.3.1 – 4.3.3. Specifically, the observers will be designed around the solid

dynamics, 𝑐*𝑠(𝑡) and 𝑞*(𝑡); the electrolyte dynamics, 𝑐𝑒(𝑡); and make a prediction for

the molar flux, 𝑗*(𝑡), using novel contributions to the adaptive observers utilizing

spatial consistency among parameters. Figure 4-4 shows the reduced block diagram

that will constitute the focus of this exploration.
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𝐺𝑐𝑠(𝑠)

𝐺𝑐𝑒(𝑠)

𝑓𝒰

𝐺𝑗*(𝑠, 𝑡)

𝐼(𝑡)

𝑉 (𝑡)

𝑗*

𝑗*

𝑐*𝑠

𝑞*

𝑐𝑒

𝒰

Figure 4-4: Block diagram of the ANCF II subsystem, expanding 𝐺𝑝(𝑠) to two sepa-
rate linear systems, and a predictive element to the molar flux, 𝑗*, using measurable
inputs and outputs, 𝐼(𝑡) and 𝑉 (𝑡).

4.3.1 Solid Observer

The first observer to be constructed is for the solid dynamics, as shown in Equations

(3.118) – (3.120), and manifested in the system shown in Equation (3.121). To con-

struct this observer, it is assumed that the open-circuit potential is fully measurable

and invertible to the surface concentration, 𝑐*𝑠𝑠,𝑖 for all nodes. Therefore, the notional

plant is a SISO plant with direct feed-through, such that,

�̇�𝑖 = 𝐴𝑝𝑥𝑖 +𝐵𝑗*𝑖

𝑐*𝑠𝑠,𝑖 = 𝐶⊤𝑥𝑖 +𝐷𝑗*𝑖

(4.70)

where the states are defined as,

𝑥𝑖 =

⎡⎣ 𝑐*𝑠,𝑖

𝑞*𝑖

⎤⎦ (4.71)

This plant can then be put into observable canonical form, from its original form in

Equations (3.122) – (3.125), such that,

𝐴𝑝 =

⎡⎣ −𝑎1 1

−𝑎2 0

⎤⎦ (4.72)
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𝐵 =

⎡⎣ −𝑏1 − 𝑎1𝑏0
−𝑏2 − 𝑎2𝑏0

⎤⎦ (4.73)

𝐶 =
[︁
1 0

]︁⊤
(4.74)

𝐷 = 𝑏0 (4.75)

The transfer function for this system, 𝐺𝑝(𝑠), is defined as,

𝐺𝑝(𝑠) = 𝐶⊤ (𝑠I− 𝐴)−1𝐵 +𝐷 (4.76)

expressed in the frequency domain as,

𝐺𝑝(𝑠) =
𝑏0𝑠

2 + 𝑏1𝑠+ 𝑏2
𝑠2 + 𝑎1𝑠+ 𝑎2

𝐺𝑝(𝑠) =

(︁
−𝑅𝑝,𝑖

35𝐷𝑠,𝑖

)︁
𝑠2 +

(︁
−315
35𝑅𝑝,𝑖

)︁
𝑠+

(︁
−3150𝐷𝑠,𝑖

35(𝑅𝑝,𝑖)
3

)︁
𝑠2 +

(︁
1050𝐷𝑠,𝑖

35(𝑅𝑝,𝑖)
2

)︁
𝑠+ 0

(4.77)

As is evident, the second pole is marginally stable, 𝑎2 = 0. Therefore, to construct

the filters, as described in Section 4.2.2, this pole is replaced with a stable pole for

the filter design, 𝑎2 = 0.001. As such, an equivalent system can be made as,

�̇�0,𝑢,𝑖 = 𝐹𝑢𝜔0,𝑢,𝑖 + 𝑔𝑢𝐾𝑗
*
𝑖

�̇�0,𝑦,𝑖 = 𝐹𝑦𝜔0,𝑦,𝑖 + 𝑔𝑦𝑐
*
𝑠𝑠,𝑖

(4.78)

where the input, 𝑗*𝑖 , is multiplied by a gain, 𝐾, to reduce the magnitude of numerator

coefficients in the transfer function. Additionally, the subscript, 𝑖, denotes the plant

for a node, 𝑖. It is noted that each filter in a volume, (±), is the same, and, as such, the

plants for each node are the same, with varying states. Therefore, the regressor bank,

as described in Equation (4.32), will be constructed to leverage this by incorporating

both temporal filters, as presented in the base construction, and a novel use of spatial

filters, using the known model structure to its advantage.

A full equivalent system is constructed, such that the dynamics of the filtered
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signals are then defined as,

�̇�±
0,𝑢,𝑖 = 𝐹±

𝑢 𝜔
±
0,𝑢,𝑖 + 𝑔𝑢𝐾𝑗

*
𝑖

�̇�±
0,𝑦,𝑖 = 𝐹±

𝑦 𝜔
±
0,𝑦,𝑖 + 𝑔𝑦

𝑐*±𝑠𝑠,𝑖
𝑐*±𝑠,𝑚𝑎𝑥

(4.79)

where the known gain, 𝐾, is applied to the input, and the output is normalized

against the maximum concentration value, 𝑐*±𝑠,𝑚𝑎𝑥. These values do not change the

system dynamics, but only alter the gain of the transfer function. The full system

regressor vector is concatenated as,

𝜔±
0,𝑖 =

[︁
𝜔±
0,𝑢,𝑖 𝜔±

0,𝑦,𝑖 𝐾𝑗*𝑖

]︁⊤
(4.80)

This vectors contains the input regressor, 𝜔±
0,𝑢,𝑖; the output regressor, 𝜔±

0,𝑦,𝑖; and the

gain adjusted input, 𝐾𝑗*𝑖 , for each node, 𝑖. The filters are then applied to the full

regressor, 𝜔±
0,𝑖, such that,

𝜔±
1,𝑖 = 𝐺𝑓 (𝑠)𝜔

±
0,𝑖

(4.81)

where the filter, 𝐺𝑓 (𝑠), is defined as,

𝐺𝑓 (𝑠) =
𝛽

𝑠+ 𝛽
(4.82)

Next, a full matrix of regressors is constructed, similarly to Equation (4.32), but in-

stead of a completely temporal filter application, this matrix is generated by inputing

the full number of nodal regressors. For each node, 𝑖, the nodal regressor, 𝜔±
0,𝑖, is

inserted, and supplemented with temporal filters to create a full-rank matrix, such

that,

Ω± =
[︁
𝜔±
0,1 . . . 𝜔±

0,𝑁± 𝜔±
1,1 . . . 𝜔±

1,𝑁±

]︁
(4.83)

The spatial regressor, 𝜔±
0,𝑖, for each volume, (±), is filtered as shown in Equation

(4.81). For 𝑁± = 3, only one filtration is necessary per node to ensure the regressor
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bank, Ω±, is full-rank. The output of the system is then defined as,

𝑌± = Ω⊤
±𝜃± (4.84)

where 𝜃± are the non-minimal parameters of the transfer function, and the output,

𝑌±, is defined as,

𝑌± =
1

𝑐±𝑠,𝑚𝑎𝑥

[︁
𝑐*𝑠𝑠,1 · · · 𝑐*𝑠𝑠,𝑁±

𝐺𝑓 (𝑠)𝑐
*
𝑠𝑠,1 · · · 𝐺𝑓 (𝑠)𝑐

*
𝑠𝑠,𝑁±

]︁⊤
(4.85)

Figure 4-5 shows the subsystem that is the focus of Section 4.3.1, and assuming an

invertible open-circuit potential function, 𝑓−1
𝒰 , enabling a calculation of the surface

concentration, 𝑐*𝑠𝑠
𝑐±𝑠,𝑚𝑎𝑥

.

𝐺𝑐𝑠(𝑠) 𝑓−1𝒰𝑓𝒰
𝑗*

𝑐*𝑠

𝑞*

𝑐*𝑠𝑠𝒰

Figure 4-5: Block diagram of the solid electrode subsystem, assuming measurable
inputs and outputs.

To generate the observer, an estimated system is then defined, with a regressor

bank as shown in Equation (4.83), such that,

̂︀𝑌± = ̂︀Ω⊤
±𝜃± (4.86)

The error of the estimated output, 𝐸, is then defined as

𝐸± = ̂︀𝑌± − 𝑌± (4.87)

where it is assumed that the true output, 𝑌 , is directly measurable and capable of

being filtered. An update law for the parameters, 𝜃±, is defined as,

˙̂
𝜃± = −Γ̂︀Ω±𝐸± (4.88)
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where the gain matrix, Γ, is defined as,

Γ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝛾1 0 · · · 0

0 𝛾2 · · · 0
...

... . . . ...

0 0 · · · 𝛾𝑁±

⎤⎥⎥⎥⎥⎥⎥⎦ (4.89)

such that 𝛾𝑖 > 0. To calculate the true parameters, a similar approach is taken as

shown in Section 4.2.2, such that a filter is defined as,

𝐹0 =
(︁ ̂︀𝐴− 𝐿𝐶⊤

)︁⊤
=

⎡⎣ 0 1

−𝑎𝑓,2 −𝑎𝑓,1

⎤⎦ (4.90)

where ̂︀𝐴 is the notional parameters of the plant. The real parameters, 𝐴, are defined

as,

𝐴 =

⎡⎣ −𝑎2 1

−𝑎1 0

⎤⎦ (4.91)

The output, 𝑐𝑠𝑠,𝑖(𝑡), for each node, 𝑖, is defined as,

𝑐𝑠𝑠,𝑖(𝑡) = 𝜃⊤𝑢,0𝜔𝑖,𝑢 + 𝜃⊤𝑦,0𝜔𝑖,𝑦 + 𝛿𝑗*𝑖 (𝑡) (4.92)

Subsequently, the true parameters of the output regressor, 𝜃𝑦,0, are defined as,

𝜃𝑦,0 =

[︃
𝑎𝑓,2 − 𝑎2
𝑎𝑓,1 − 𝑎1

]︃
(4.93)

Using the result of this evaluation, the true parameters of the input regressor, 𝜃𝑢,0,

are defined as,

𝜃𝑢,0 =

[︃
𝑏2 − 𝑏0𝑎2
𝑏1 − 𝑏0𝑎1

]︃
− 𝑏0𝜃𝑦,0 (4.94)

Finally, the feed-through parameter, 𝛿, is defined as,

𝛿 =
𝑏0
𝐾

(4.95)
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where 𝐾 is the normalization gain applied to the input. The parameters are trans-

formed, as in Equation (4.69), such that,

𝜃± =

⎡⎢⎢⎢⎣
𝑇−⊤
𝑢 𝜃±𝑢,0

𝑇−⊤
𝑦 𝜃±𝑦,0

𝛿

⎤⎥⎥⎥⎦ (4.96)

Using the definition of the observer in Equations (4.86) – (4.88), and a calcu-

lation of the parameters as shown in Equation (4.96), the observer was simulated.

The parameter convergence is shown in Figure 4-6, normalized by the true values

determined in Equation (4.96). Figure 4-8 shows the current profile used for the

simulation, ensuring persistent excitation.

Figure 4-6: Normalized convergence of the parameters of an adaptive observer under
the conditions presented in Section 4.3.1 for the solid electrode dynamics.
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Figure 4-7: Full magnitude parameter convergence of the adaptive observer for the
solid electrode dynamics.

Figure 4-8: PRBS profile used for simulation as the current input.
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4.3.2 Molar Flux Estimate

The next observer to construct is that of the molar flux prediction, 𝑗*, shown as 𝐺𝑗*(𝑠)

in Figure 4-4. It is hypothesized that a molar flux prediction can be made by using

a linear combination of input measurements, 𝐼(𝑡); and output measurements, 𝑉 (𝑡).

This combination has time-varying gains, and may include a set of filters applied to the

current. Molar flux is in many ways a filtered function of current, as the integration

of molar flux is equal to the current through the cell,
∫︀ 𝐿±

0
𝑗±(𝑥, 𝑡)𝑑𝑥 = ∓𝐼(𝑡). Figure

4-9 shows the equivalent block diagram of this observer. In the interest of testing

∑︀
𝛽(𝑡)

𝑓𝑗*(𝑠, 𝑡)𝐼(𝑡)

𝑉 (𝑡)

𝑗*

Figure 4-9: Block diagram of the molar flux function subsystem, assuming measurable
inputs and outputs.

this hypothesis, two test cases were used to determine the best application of this

theory to an a-priori estimate of the molar flux. The concept of the molar flux as a

measurable output will be discussed in Section 4.4.

Test Case 1

The first test case is arguably the simplest, such that the molar flux at each node, 𝑖,

is equal to a unique, time-varying coefficient multiplied by the current, and another

multiplied by the voltage. This is shown in Equation (4.97), with a known gain

applied to the molar flux to ease computational burden, as was the approach in

Equation (4.79).

𝐾𝑗*𝑖 = 𝛼𝑖(𝑡)𝐼(𝑡) + 𝛽𝑖(𝑡)𝑉 (𝑡) (4.97)
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This creates analogously two regressors, one for the current and one for the voltage,

without any inertia or filtration. Subsequently, the parameters of this system are

defined by,

𝜃𝑗(𝑡) =
[︁
𝛼1(𝑡) 𝛽1(𝑡) · · · 𝛼𝑁(𝑡) 𝛽𝑁(𝑡)

]︁⊤
(4.98)

The estimated system is defined as,

𝐾�̂�*𝑖 = ̂︀𝛼𝑖(𝑡)𝐼(𝑡) + ̂︀𝛽𝑖(𝑡)𝑉 (𝑡) (4.99)

with estimated parameters,

𝜃𝑗(𝑡) =
[︁ ̂︀𝛼1(𝑡) ̂︀𝛽1(𝑡) · · · ̂︀𝛼𝑁(𝑡) ̂︀𝛽𝑁(𝑡) ]︁⊤ (4.100)

The regressor matrix, which is directly measurable, is defined as,

Ω± =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 𝑉 0 0 · · · 0 0

0 0 𝐼 𝑉 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 𝐼 𝑉

𝐺(𝑠)𝐼 𝐺(𝑠)𝑉 0 0 · · · 0 0

0 0 𝐺(𝑠)𝐼 𝐺(𝑠)𝑉 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 𝐺(𝑠)𝐼 𝐺(𝑠)𝑉

𝐺𝑘(𝑠)𝐼 𝐺𝑘(𝑠)𝑉 0 0 · · · 0 0

0 0 𝐺𝑘(𝑠)𝐼 𝐺𝑘(𝑠)𝑉 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 𝐺𝑘(𝑠)𝐼 𝐺𝑘(𝑠)𝑉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.101)
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where filtered iterations of the input and output are used to create a full-rank matrix,

for 𝑁 nodes, such that each filter is defined as,

𝐺𝑖(𝑠) =

(︂
𝛽

𝑠+ 𝛽

)︂𝑖
(4.102)

for 𝑖 ∈ [1 . . . 𝑘], 𝑘 = 𝑁 − 1. The error in the output, �̃�*𝑖 is defined as,

�̃�*𝑖 = 𝐾�̂�*𝑖 −𝐾𝑗*𝑖 (4.103)

while the full error vector, 𝐸, of the regressor matrix equivalent system, Ω±𝜃 is defined

as,

𝐸 =
[︁
�̃�*1 · · · �̃�*𝑁 𝐺(𝑠)�̃�*1 · · · 𝐺(𝑠)�̃�*𝑁 𝐺𝑘(𝑠)�̃�*1 · · · 𝐺𝑘(𝑠)�̃�*𝑁

]︁⊤
(4.104)

An update law is created from (4.101) and (4.104) to update the parameters of Equa-

tion (4.100), such that,
˙̂
𝜃𝑗 = −ΓΩ⊤

±𝐸 (4.105)

Figure 4-10 shows the error results of this application, using the simulation current

profile of Figure 4-8. Figure 4-11 shows the resulting coefficient values for this simu-

Figure 4-10: Error results while using a scalar coefficient for both input, 𝐼(𝑡); and
output, 𝑉 (𝑡).

lation. It should be noted that there are no explicitly defined "true" parameters for

this observer, only a desire to diminish the error as much as possible, while minimiz-
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Figure 4-11: Resulting time-varying parameters of the molar flux observer system.
The current has a fairly constant dependency, while the voltage dependency varies
significantly.

ing the necessary gain to achieve this end. By examining Figure 4-10, it is seen that

the normalized error in the anode is substantive, but there persists a steady-state

error for one of the terms. Contrary to this reasonable performance in the anode,

the cathode see wildly varying error terms. This is predictable because the cathode

has faster diffusion rates, and therefore more variance in molar flux terms. In Figure

4-11, which depicts the converged value of the parameters, it can be seen that the

strongest dependency is on the input current, 𝐼(𝑡), for each molar flux term. The

relationship to the output, 𝑉 (𝑡), is significantly time-varying, oscillating around zero.

Therefore, to alleviate this performance insufficiency, a more complex regressor was

created, with a higher built-in correlation to the frequency content of the input, 𝐼(𝑡),

as described below.

Test Case 2

To reduce the error bias, additional filters are applied to the current, and unknown

coefficients are added to the parameter set. This results in a hypothetical definition
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of the molar flux, �̂�*𝑖 , such that,

𝐾�̂�*𝑖 = 𝛼𝑖(𝑡)𝐼(𝑡) + 𝛽𝑖(𝑡)𝑉 (𝑡) + 𝛾𝑖(𝑡)
⊤𝑓(𝑠)𝐼(𝑡) (4.106)

where the filter-adjacent parameter vector, 𝛾𝑖, is defined as,

𝛾𝑖(𝑡) =
[︁
𝛾𝑖,1(𝑡) · · · 𝛾𝑖,𝑞(𝑡)

]︁⊤
(4.107)

and a vector of filters, 𝑓(𝑠), defined by,

𝑓(𝑠) =
[︁ (︁

𝑘1
𝑠+𝑘1

)︁
· · ·

(︁
𝑘𝑞
𝑠+𝑘𝑞

)︁ ]︁⊤
(4.108)

for 𝑞 = 𝑛𝑓 . To ensure a wide spectrum of frequency content, multiple poles, 𝑘𝑖, are

defined as,

𝑘𝑖 = 2(1−𝑖) (4.109)

for use in the filter vector, 𝑓(𝑠), as shown in Equation (4.108). The full set of param-

eters for use with the regressors is defined by,

𝜃𝑗(𝑡) =[︁
𝛼1(𝑡) 𝛽1(𝑡) 𝛾1,1(𝑡) · · · 𝛾1,𝑞(𝑡) 𝛼2(𝑡) · · · 𝛼𝑁 (𝑡) 𝛽𝑁 (𝑡) 𝛾𝑁,1(𝑡) · · · 𝛾𝑁,𝑞(𝑡)

]︁⊤ (4.110)

An output error, �̃�*𝑖 , for each node, 𝑖, is subsequently defined as,

𝐾�̃�*𝑖 = 𝐾�̂�*𝑖 −𝐾𝑗*𝑖 (4.111)
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where it is again assumed that 𝑗*𝑖 is measurable. The regressor matrix, Ω±, is defined

as shown in Equation (4.112). This matrix is both full column rank and full row rank.

Ω± =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 𝑉 𝑓(𝑠)𝐼 0 0 0 · · · 0 0 0

0 0 0 𝐼 𝑉 𝑓(𝑠)⊤𝐼 · · · 0 0 0

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 · · · 𝐼 𝑉 𝑓(𝑠)⊤𝐼

𝐺(𝑠)𝐼 𝐺(𝑠)𝑉 𝐺(𝑠)𝑓(𝑠)⊤𝐼 0 0 0 · · · 0 0 0

0 0 0 𝐺(𝑠)𝐼 𝐺(𝑠)𝑉 𝐺(𝑠)𝑓(𝑠)⊤𝐼 · · · 0 0 0

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 · · · 𝐺(𝑠)𝐼 𝐺(𝑠)𝑉 𝐺(𝑠)𝑓(𝑠)⊤𝐼

𝐺𝑘(𝑠)𝐼 𝐺𝑘(𝑠)𝑉 𝐺𝑘(𝑠)𝑓(𝑠)⊤𝐼 0 0 0 · · · 0 0 0

0 0 0 𝐺𝑘(𝑠)𝐼 𝐺𝑘(𝑠)𝑉 𝐺𝑘(𝑠)𝑓(𝑠)⊤𝐼 · · · 0 0 0

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 · · · 𝐺𝑘(𝑠)𝐼 𝐺𝑘(𝑠)𝑉 𝐺𝑘(𝑠)𝑓(𝑠)⊤𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.112)

where each regressor is filtered with 𝐺(𝑠), similarly defined as,

𝐺(𝑠) =
𝛽

𝑠+ 𝛽
(4.113)

A full error vector, 𝐸, is defined as,

𝐸 =𝐾
[︁
�̃�*1 · · · �̃�*𝑁 𝐺(𝑠)�̃�*1 · · · 𝐺(𝑠)�̃�*𝑁 𝐺𝑘(𝑠)�̃�*1 · · · 𝐺𝑘(𝑠)�̃�*𝑁

]︁⊤
=Ω⊤

±𝜃−

𝐾
[︁
𝑗*1 · · · 𝑗*𝑁 𝐺(𝑠)𝑗*1 · · · 𝐺(𝑠)𝑗*𝑁 𝐺𝑘(𝑠)𝑗*1 · · · 𝐺𝑘(𝑠)𝑗*𝑁

]︁⊤ (4.114)

Finally, an update law, combining Equations (4.112) and (4.114), defines the estima-

tions of the parameters, such that,

˙̂
𝜃𝑗 = −ΓΩ⊤

±𝐸 (4.115)

This observer system was simulated using the current profile shown in Figure 4-8.

Figure 4-12 shows the resulting error using the update law of Equation (4.115), trying

exclusively to minimize error. It can be seen that the RMS error for the anode molar
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Figure 4-12: Resulting error of the anode and cathode a-priori calculation of the
molar flux, 𝑗*𝑖 , for each node, 𝑖.

flux terms is driven to below 5%, with an average absolute error below 0.7%. In the

cathode, the previous culprit, the error is more persistent, with an average absolute

error less than 6.7%. Figure 4-13 shows the parameter values found within the anode,

while Figure 4-14 shows the parameter values found in the cathode. It is interesting

to note that the strongest correlating coefficient is of the slowest pole. This could be

attributed to either a strong memory of the current, or a correction for the highest

attenuation. Using this predictive method, an a-priori estimate of the molar flux

vector, 𝑗*, is achieved.
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Figure 4-13: Time-varying parameter values of equivalent regressor system for the
anode.
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Figure 4-14: Time-varying parameter values of equivalent regressor system for the
cathode.
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4.3.3 Electrolyte Observer

The final observer that this thesis will focus on is that of the electrolyte concentration,

based on Equation (3.157), and represented as 𝐺𝑐𝑒(𝑠) in Figure 4-4. First, a state-

space representation of the system is defined, such that,

�̇� = 𝐴𝑥+𝐵𝑢

𝑦 = 𝐶𝑥
(4.116)

where 𝐴 ∈ R𝑞×𝑞 is defined as,

𝐴 =
1

(𝑙′)2
M−1K (4.117)

𝐵 ∈ R𝑞×𝑛 is defined as,

𝐵 =
𝑡0𝑎𝑎

±

𝜖±𝑒
M−1L (4.118)

and 𝐶 ∈ R𝑞×𝑚 defined as,

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0

0 0 · · · 0 0

0 1 · · · 0 0

0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.119)

for 𝑢 ∈ R𝑛 and 𝑦 ∈ R𝑚. For multiple-input, multiple-output systems, the system has

no pure canonical form, and instead a matrix of transfer functions is generated, such

that,

𝑌 (𝑠)

𝑈(𝑠)
=

⎡⎢⎢⎢⎣
𝑦1(𝑠)
𝑢1(𝑠)

· · · 𝑦1(𝑠)
𝑢𝑛(𝑠)

... . . . ...
𝑦𝑚(𝑠)
𝑢1(𝑠)

· · · 𝑦𝑚(𝑠)
𝑢𝑛(𝑠)

⎤⎥⎥⎥⎦ (4.120)

where each 𝑦𝑗(𝑠)

𝑢𝑖(𝑠)
is the transfer function from input channel, 𝑖, to output channel, 𝑗.

For this consideration, a naïve adaptive observer could be constructed in much the

same way as delineated in Sections 4.1 and 4.2, such that a vector of parameters is
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defined for every output channel, 𝑗 ∈ [1 · · ·𝑚],

𝜃1 =
[︁
𝜃𝑦1 𝜃𝑢1,𝑦1 · · · 𝜃𝑢𝑛,𝑦1

]︁⊤
𝜃2 =

[︁
𝜃𝑦2 𝜃𝑢2,𝑦2 · · · 𝜃𝑢𝑛,𝑦2

]︁⊤
...

𝜃𝑚 =
[︁
𝜃𝑦𝑚 𝜃𝑢2,𝑦𝑚 · · · 𝜃𝑢𝑛,𝑦𝑚

]︁⊤
(4.121)

An associated set of regressors for each output channel can be constructed as,

𝜔1 =
[︁
𝜔𝑦1 𝜔𝑢1 · · · 𝜔𝑢𝑛

]︁⊤
𝜔2 =

[︁
𝜔𝑦2 𝜔𝑢1 · · · 𝜔𝑢𝑛

]︁⊤
...

𝜔𝑚 =
[︁
𝜔𝑦𝑚 𝜔𝑢1 · · · 𝜔𝑢𝑛

]︁⊤
(4.122)

and the output of the equivalent system, 𝑌 , is defined as,

𝑌 =
[︁
𝑦1 𝑦2 · · · 𝑦𝑚

]︁⊤
(4.123)

Each output channel of the equivalent system is defined as,

𝑦𝑗 = 𝜃⊤𝑗 𝜔𝑗 (4.124)

In the ANCF II model, 𝑛 = 6, 𝑚 = 6 and 𝑞 = 12. This results in the total number

of equivalent system parameters, 𝑁𝜃𝑒 = 𝑚𝑞(𝑛 + 1), or 𝑁𝜃𝑒 = 504. This is a high

number of parameters to estimate accurately, since there are so many degrees of

freedom of the equivalent system. It is also noted that, from a BMS standpoint, the

original model only has 7 unknowns. These are the element diffusion coefficient and

normalized length quotients, 𝐷𝑖(𝑡)
(𝑙′𝑖)

2 , of which there are five; and the volume input gains,
𝑡0𝑎𝑎

±

𝜖±𝑒
, of which there are two. Therefore, an exploration of a novel adaptive observer

to determine lumped parameters of a system with a known structure is considered,
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motivated by a desire to constrain learning to values that are truly unknown.

Exploration of Lumped Parameters

To begin, an observer will be developed to determine the lumped parameters of a

second order MIMO system, which can then be scaled to the transfer function matrix

shown in Equation (4.120). An exploration of the resulting transfer functions of

known system matrices follows, such that,

𝐴 =

⎡⎣ 𝑎 𝑏

𝑐 𝑑

⎤⎦ 𝐵 =

⎡⎣ 𝑒 𝑓

𝑔 ℎ

⎤⎦ 𝐶 =

⎡⎣ 1 0

0 1

⎤⎦ (4.125)

where the resulting poles of the transfer function are the determinant, |𝑠I− 𝐴|, or,

(𝑠I− 𝐴)−1 =
1

(𝑠− 𝑎)(𝑠− 𝑑)− 𝑐𝑏

⎡⎣ 𝑠− 𝑑 𝑏

𝑐 𝑠− 𝑎

⎤⎦
=

1

𝑠2 − (𝑎+ 𝑑)𝑠+ (𝑎𝑑− 𝑐𝑏)

⎡⎣ 𝑠− 𝑑 𝑏

𝑐 𝑠− 𝑎

⎤⎦ (4.126)

The first transfer function, as defined from the first input channel to the first output

channel is,

𝑌1(𝑠)

𝑈1(𝑠)
=

[︁
1 0

]︁⎛⎝ 1

𝑠2 − (𝑎+ 𝑑)𝑠+ (𝑎𝑑− 𝑐𝑏)

⎡⎣ 𝑠− 𝑑 𝑏

𝑐 𝑠− 𝑎

⎤⎦⎡⎣ 𝑒

𝑔

⎤⎦⎞⎠ (4.127)

where the simplified transfer function is defined as,

𝑌1(𝑠)

𝑈1(𝑠)
=

𝑒𝑠+ (𝑔𝑏− 𝑒𝑑)
𝑠2 − (𝑎+ 𝑑)𝑠+ (𝑎𝑑− 𝑐𝑏)

(4.128)

126



Each additional transfer function can be similarly defined as,

𝑌2(𝑠)

𝑈1(𝑠)
=

𝑔𝑠+ (𝑒𝑐− 𝑔𝑎)
𝑠2 − (𝑎+ 𝑑)𝑠+ (𝑎𝑑− 𝑐𝑏)

𝑌1(𝑠)

𝑈2(𝑠)
=

𝑓𝑠+ (ℎ𝑏− 𝑓𝑑)
𝑠2 − (𝑎+ 𝑑)𝑠+ (𝑎𝑑− 𝑐𝑏)

𝑌2(𝑠)

𝑈2(𝑠)
=

ℎ𝑠+ (𝑓𝑐− ℎ𝑎)
𝑠2 − (𝑎+ 𝑑)𝑠+ (𝑎𝑑− 𝑐𝑏)

(4.129)

Subsequently, an additional system is created with a lumped system parameter, 𝛼;

and a lumped input parameter, 𝛽, which results in the following description,

𝐴𝑝 = 𝛼𝐴 =

⎡⎣ 𝛼𝑎 𝛼𝑏

𝛼𝑐 𝛼𝑑

⎤⎦ 𝐵𝑝 = 𝛽𝐵 =

⎡⎣ 𝛽𝑒 𝛽𝑓

𝛽𝑔 𝛽ℎ

⎤⎦ 𝐶 =

⎡⎣ 1 0

0 1

⎤⎦ (4.130)

Again, the poles are calculated using the determinant, such that,

(𝑠I− 𝐴𝑝)−1 =
1

(𝑠− 𝛼𝑎)(𝑠− 𝛼𝑑)− 𝛼2𝑐𝑏

⎡⎣ 𝑠− 𝛼𝑑 𝛼𝑏

𝛼𝑐 𝑠− 𝛼𝑎

⎤⎦
=

1

𝑠2 − 𝛼(𝑎+ 𝑑)𝑠+ 𝛼2(𝑎𝑑− 𝑐𝑏)

⎡⎣ 𝑠− 𝛼𝑑 𝛼𝑏

𝛼𝑐 𝑠− 𝛼𝑎

⎤⎦ (4.131)

The first transfer function, for clarity, is explicitly defined as,

𝑌1(𝑠)

𝑈1(𝑠)
=

[︁
1 0

]︁⎛⎝ 1

𝑠2 − 𝛼(𝑎+ 𝑑)𝑠+ 𝛼2(𝑎𝑑− 𝑐𝑏)

⎡⎣ 𝑠− 𝛼𝑑 𝛼𝑏

𝛼𝑐 𝑠− 𝛼𝑎

⎤⎦⎡⎣ 𝛽𝑒

𝛽𝑔

⎤⎦⎞⎠ (4.132)

with a simplified form,

𝑌1(𝑠)

𝑈1(𝑠)
=

𝛽(𝑒𝑠+ 𝛼(𝑔𝑏− 𝑒𝑑))
𝑠2 − 𝛼(𝑎+ 𝑑)𝑠+ 𝛼2(𝑎𝑑− 𝑐𝑏)

(4.133)
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Each subsequent transfer function is defined as,

𝑌2(𝑠)

𝑈1(𝑠)
=

𝛽(𝑔𝑠+ 𝛼(𝑒𝑐− 𝑔𝑎))
𝑠2 − 𝛼(𝑎+ 𝑑)𝑠+ 𝛼2(𝑎𝑑− 𝑐𝑏)

𝑌1(𝑠)

𝑈2(𝑠)
=

𝛽(𝑓𝑠+ 𝛼(ℎ𝑏− 𝑓𝑑))
𝑠2 − 𝛼(𝑎+ 𝑑)𝑠+ 𝛼2(𝑎𝑑− 𝑐𝑏)

𝑌2(𝑠)

𝑈2(𝑠)
=

𝛽(ℎ𝑠+ 𝛼(𝑓𝑐− ℎ𝑎))
𝑠2 − 𝛼(𝑎+ 𝑑)𝑠+ 𝛼2(𝑎𝑑− 𝑐𝑏)

(4.134)

Looking at Equations (4.129) and (4.134), a pattern begins to emerge regarding

the influence of the lumped parameters on the resulting transfer functions. Namely,

it can be shown that for any order system organized in the form above, the following

relationship holds true,

𝐺(𝑠) =
𝛽𝑏𝑝,1𝑠

𝑞−1 + 𝛽𝛼𝑏𝑝,2𝑠
𝑞−2 + . . .+ 𝛽𝛼𝑞−1𝑏𝑝,𝑞

𝑠𝑘 + 𝛼𝑎𝑝,1𝑠𝑞−1 + . . .+ 𝛼𝑞𝑎𝑝,𝑞
(4.135)

where 𝑏𝑝,𝑘 and 𝑎𝑝,𝑘 are known coefficients of the transfer function, for 𝑘 ∈ [1 · · · 𝑞],

while 𝛼 and 𝛽 are unknown lumped parameters. While this is an interesting obser-

vation, it does not directly lead to the construction of an adaptive observer. Instead,

a function for the equivalent parameters, 𝜃, needs to be determined, and not a func-

tion to determine the transfer function coefficient. As an example for examining this

procedure, a second order transfer function takes the form,

𝐺𝑝(𝑠) =
𝛽𝑏𝑝,1𝑠+ 𝛽𝛼𝑏𝑝,2

𝑠2 + 𝛼𝑎𝑝,1𝑠+ 𝛼2𝑎𝑝,2
(4.136)

An arbitrary, negative definite filter, 𝐹 , is defined in observer canonical form,

𝐹 =

⎡⎣ 0 1

−𝑎𝑓,2 −𝑎𝑓,1

⎤⎦ (4.137)

and an input vector, 𝑔,

𝑔 =
[︁
0 1

]︁⊤
(4.138)
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For a single-input, single-output system, the regressor equivalent system can be de-

fined as,

�̇�𝑢 = 𝐹𝜔𝑢 + 𝑔𝑢

�̇�𝑦 = 𝐹𝜔𝑦 + 𝑔𝑦
(4.139)

where the output, 𝑦, is simultaneously defined as,

𝑦 = 𝜃⊤

⎡⎣ 𝜔𝑢

𝜔𝑦

⎤⎦
= 𝜃⊤𝜔

(4.140)

The parameters, 𝜃, are explicitly defined as the numerator coefficients of the two

equivalent system outputs, notationally expressed as,

𝜃 =
[︁
𝑏𝑢,2 𝑏𝑢,1 𝑏𝑦,2 𝑏𝑦,1

]︁⊤
(4.141)

where the transfer function of the single-input, single-output adaptive observer is,

𝐺𝑜(𝑠) =
𝑏𝑢,1𝑠+ 𝑏𝑢,2

𝑠2 + (𝑎𝑓,1 − 𝑏𝑦,1) 𝑠+ (𝑎𝑓,2 − 𝑏𝑦,2)
(4.142)

Now, using the transfer function of Equations (4.136) and (4.142), the parameters of

the observer, 𝜃, can be defined as a function of known parameters, 𝑎𝑝,𝑖 and 𝑏𝑝,𝑖; and

unknown parameters, 𝛼 and 𝛽, such that,

𝑏𝑢,1 = 𝛽𝑏𝑝,1

⇒ 𝛽 =
𝑏𝑢,1
𝑏𝑝,1

(4.143)

It is important that this coefficient, 𝑏𝑢,1 is a linear function of one unknown, 𝛽. It

will be used in the subset of parameters to be observed. Subsequently, the other

coefficients are defined,

𝑏𝑢,2 = 𝛽𝛼𝑏𝑝,2 (4.144)
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𝑎𝑓,1 − 𝑏𝑦,1 = 𝛼𝑎𝑝,1

⇒ 𝛼 =
𝑎𝑓,1 − 𝑏𝑦,1

𝑎𝑝,1

(4.145)

where an output parameter, 𝑏𝑦,1, is again a linear function of the unknown parameter,

𝛼. The subsequent nonlinear parameter for a second order system is defined as,

𝑏𝑦,2 = 𝑎𝑓,2 − 𝛼2𝑎𝑝,2 (4.146)

This definition of the observer parameters, 𝜃, can be generalized to a 𝑞𝑡ℎ order system

as,

𝜃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃𝛽
𝑏𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑞−1

𝑏𝑝,𝑞
...

𝜃𝛽
𝑏𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁
𝑏𝑝,2

𝜃𝛽

𝑎𝑓,𝑞 −
(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑞
𝑎𝑝,𝑞

...

𝑎𝑓,2 −
(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁2
𝑎𝑝,2

𝜃𝛼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.147)

where 𝜃𝛽 and 𝜃𝛼 are linear functions of 𝛽 and 𝛼, respectively. Now that the full

parameters, 𝜃, are defined as a function of the lumped parameter subset, 𝛼 and 𝛽, an

update law can be devised. The subset of parameters, 𝜃*, is defined as,

𝜃* =
[︁
𝜃𝛽 𝜃𝛼

]︁⊤
(4.148)

Using a definition similar to gradient descent [4], a differentiation is applied to the

error equation,

𝑒 = 𝑦 − 𝑦 (4.149)

where,

𝑦 = 𝜃⊤�̂� (4.150)

130



such that,
𝜕𝑒

𝜕𝜃*
=

𝜕𝑦

𝜕𝜃*
(4.151)

Given that the output, 𝑦, is predetermined and not a function of the estimated system,

the derivative of the error with respect to the subset of parameters is only a function

of the derivate of the estimated output with respect to the subset of parameters. This

expression can be further reduced as,

𝜕𝑦

𝜕𝜃*
=
𝜕𝜃⊤

𝜕𝜃*
�̂� (4.152)

as the regressors are independent of the parameters, 𝜃, and their subset, 𝜃*, that

define the system. Using the expression shown in Equation (4.152), an update law

begins to take form. A Jacobian is first generally defined as,

𝐽 =
𝜕𝜃

𝜕𝜃*
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏𝑝,𝑘
𝑏𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑘−1

−(𝑘 − 1)
𝜃𝛽𝑏𝑝,𝑘
𝑏𝑝,1𝑎𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑘−2

...
...

𝑏𝑝,𝑖
𝑏𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑖−1

−(𝑖− 1)
𝜃𝛽𝑏𝑝,𝑖
𝑏𝑝,1𝑎𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑖−2

...
...

𝑏𝑝,2
𝑏𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁
− 𝜃𝛽𝑏𝑝,𝑖
𝑏𝑝,1𝑎𝑝,1

1 0

0 𝑘
𝑎𝑝,𝑘
𝑎𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑘−1

...
...

0 𝑖
𝑎𝑝,𝑖
𝑎𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑖−1

...
...

0 2𝑎𝑝,2
𝑎𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.153)

Then, using this Jacobian, an update law for the subset of parameters is devised,

such that,
˙̂
𝜃* = −𝛾J⊤�̂�𝑒 (4.154)
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where,

J = 𝐽 |𝜃*=𝜃* (4.155)

and the gains, 𝛾 > 0. The update law shown in Equation (4.154) will be applied

to a test case to show its convergence, and subsequently extended to higher order

cases, but its stability will first be considered. Figure 4-15 shows the simulation of a

second-order SISO system. Note the rapid convergence of normalized parameters with

minimal frequency content of the input. Figure 4-16 shows the same for a third-order

sytem.
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Figure 4-15: Test case for a second-order SISO plant showing inputs, 𝑢(𝑡); outputs,
𝑦(𝑡); regressors, 𝜔; and the convergence of the parameter subset, 𝜃*, comprised of 𝜃𝛽
and 𝜃𝛼.
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Figure 4-16: Test case for a third-order SISO plant showing inputs, 𝑢(𝑡); outputs,
𝑦(𝑡); regressors, 𝜔; and the convergence of the parameter subset, 𝜃*, comprised of 𝜃𝛽
and 𝜃𝛼.

Lyapunov Stability Analysis

To begin the stability analysis, several error terms need to be defined, first as the

error in the observed parameters, 𝜃, such that,

𝜃 = 𝜃 − 𝜃 (4.156)

next as the error in the regressors, �̃�, also called sensitivity error,

�̃� = �̂� − 𝜔 (4.157)
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and finally, the error in the output, 𝑒,

𝑒 = 𝑦 − 𝑦 = 𝜃⊤�̂� + 𝜃⊤�̃� (4.158)

To study the stability of this update law, a positive semi-definite Lyapunov candidate

function, 𝑉 (𝜃), is chosen, with the desire to define a negative semi-definite time

derivative, such that,

𝑉 ≥ 0

�̇� ≤ 0
(4.159)

Most conventionally [37], a Lyapunov candidate for adaptive observers is chosen as,

𝑉 = 𝜃⊤𝜃, but this leaves a term that is not sign-definite when calculating its time

derivative using the Jacobian, J. Therefore, a Lyapunov candidate is proposed as,

𝑉 = 𝜃⊤Φ−1𝜃 (4.160)

where the Jacobian correction term, Φ, is defined as,

Φ = JJ⊤ (4.161)

Subsequently, the time derivative of Equation (4.160) is defined as,

�̇� = 2𝜃⊤Φ−1 ˙̃𝜃 + 𝜃⊤
𝜕Φ−1

𝜕𝑡
𝜃 (4.162)

This expression will be considered in two separate terms, specifically the two additive

terms. The first can be expanded using the definition of Equation (4.156), such that,

2𝜃⊤Φ−1 ˙̃𝜃 = 2
(︁
𝜃 − 𝜃

)︁⊤
Φ−1

(︁
˙̂
𝜃 − 𝜃

)︁
(4.163)
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The true parameters, 𝜃 of the system are unchanging, 𝜃 = 0, so this expression can

be simplified to,

2𝜃⊤Φ−1 ˙̃𝜃 = 2𝜃⊤Φ−1 ˙̂𝜃 (4.164)

The rate of change of the estimated parameters, ˙̂
𝜃, is defined as,

˙̂
𝜃 =

𝜕𝜃

𝜕𝜃*
𝜕𝜃*

𝜕𝑡
= J ˙̂𝜃* (4.165)

Substituting the update law of Equation (4.154) and the error definition of Equation

(4.158) into this expression yields,

˙̂
𝜃 = 𝐽

(︀
−𝛾𝐽⊤�̂�𝑒

)︀
= −𝛾Φ�̂�

(︁
𝜃⊤�̂� + 𝜃⊤�̃�

)︁ (4.166)

From Equation (4.16), a definition of the filter which defines the regressors and the

sensitivity error shows that,

lim
𝑡→∞

�̃� = 0 (4.167)

Substituting this definition into Equation (4.166) generates a reduced definition of

the parameter evolution,
˙̂
𝜃 = −𝛾Φ�̂�𝜃⊤�̂� (4.168)

The definition of Equation (4.168) can be substituted into Equation (4.164) to yield,

2𝜃⊤Φ−1 ˙̃𝜃 = −2𝛾𝜃⊤Φ−1Φ�̂�𝜃⊤�̂�

= −2𝛾𝜃⊤�̂�𝜃⊤�̂�

= −2𝛾
(︁
𝜃⊤�̂�

)︁2 (4.169)

Returning now to the expression shown in Equation (4.162), the time-derivative of

the Lyapunov candidate is,

�̇� = −2𝛾
(︁
𝜃⊤�̂�

)︁2
+ 𝜃⊤

𝜕Φ−1

𝜕𝑡
𝜃 (4.170)
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Given that the error term, −2𝛾
(︁
𝜃⊤�̂�

)︁2
is sign definite, the onus of maintaining

negativity falls on the definition of the rate of change of Φ−1, such that,

�̇� ≤ 0 ⇐⇒ 𝜃⊤
𝜕Φ−1

𝜕𝑡
𝜃 ≤ 2𝛾

(︁
𝜃⊤�̂�

)︁2
(4.171)

It should be noted that Φ−1 is not well-defined, as Φ is not full rank, and therefore the

time derivative of a pseudo-inverse Φ is considered sufficient. Figures 4-17 and 4-18

show the stability terms for the second and third order systems simulated in Figures

4-15 and 4-16, respectively. Note that the sign-definite terms are consistently larger

in magnitude than the nebulous 𝜕Φ−1

𝜕𝑡
terms, in this case.
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Figure 4-17: Lyapunov stability terms and parameter convergence for a second-order
SISO system.
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Figure 4-18: Lyapunov stability terms and parameter convergence for a third-order
SISO system.

Alternative Lumped Parameter Learning Options

In addition to the novel Jacobian application to the adaptive observer form described

in literature [37], other means of limited learning were considered for the purpose

of estimating the subset of non-minimal parameters for the full system. One such

way is that of projection [22], which defines a set, 𝒮, containing the parameters, 𝜃,

constrained by a function, 𝑔(𝜃) = 0, such that,

𝒮 = {𝜃 ∈ R𝑛|𝑔(𝜃) = 0} (4.172)

The constraint function, 𝑔(𝜃) = 0, must be differentiable, and the learning on the

estimated parameters, 𝜃, is then projected onto the subspace in which the parameters,

𝜃, are constrained, by subtracting off the learning orthogonal to that space. This is
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shown in Equation (4.173).

˙̂
𝜃 = −Γ𝜔⊤𝑒+ Γ

∇𝑔∇𝑔⊤

∇𝑔⊤Γ∇𝑔
Γ𝜔⊤𝑒 (4.173)

This method was not chosen for implementation for two reasons. First, the function,

𝑔(𝜃) = 0, is not readily defined for the problem outlined, and second, the learning

that is orthogonal to the projected space is still valid, but should only operate on the

gradient of steepest descent of the subset of parameters, 𝜃*. Instead, all parameters

are updated, but only in such a way that is consistent with 𝑔(𝜃) = 0.

Another approach is that of nonlinear parameterization [2] [9], which consists of

defining a dynamic equation as a nonlinear function of parameters. Namely, the

dynamics of the output estimate, ˙̂𝑦, are a function of a parameter set, 𝛼(𝑦, 𝑢), and a

nonlinear function, 𝑓(𝜃, 𝜔) of the parameters, 𝜃. The plant dynamics appear in the

form,

�̇� = −𝛼(𝑦, 𝑢)𝑦 + 𝑓 (𝜃0, 𝜔(𝑦, 𝑢)) (4.174)

The algorithm employed to control this system is called Min-Max Parameter Estima-

tion [9]. This is achieved by implementing a saturation of a ratio of the error, 𝑦, and

an arbitrary positive number, 𝜖; as well as the result of an optimization problem.

˙̂𝑦 = −𝛼(𝑦, 𝑢)
(︂
𝑦 − 𝜖sat

(︂
𝑦

𝜖

)︂)︂
+ 𝑓(𝜃, 𝜔)− 𝑎*sat

(︂
𝑦

𝜖

)︂
˙̂
𝜃 = −𝑦𝜖𝜑*

(4.175)

where the solutions to 𝑎* and 𝜑* are derived from optimizing 𝑔(𝜃, 𝜔, 𝜑), such that,

𝑎* = min
𝜑∈R𝑚

max
𝜃∈Ω0

𝑔(𝜃, 𝜔, 𝜑)

𝜑* = arg min
𝜑∈R𝑚

max
𝜃∈Ω0

𝑔(𝜃, 𝜔, 𝜑)

𝑔(𝜃, 𝜔, 𝜑) = sat
(︂
𝑦

𝜖

)︂(︁
𝑓(𝜃, 𝜔)− 𝑓(𝜃, 𝜔)− 𝜑*⊤(𝜃 − 𝜃)

)︁ (4.176)

The resulting parameters of this method rely on a convex function, 𝑓(𝜃0, 𝜔), and there

is no guarantee of convexity in the problem proposed, when generalized to any known
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construction of a matrix given a subset of parameters. It will be observed that the

proposed method also suffers from convergence to a local minimum, but this can be

overcome through heuristic choice of initial conditions.

Extension to Multiple Input, Single Output System

The results of the previous section will now be extended to a multiple input, single

output system, with a dynamical system described by,

�̇� = 𝛼𝐴𝑥+ 𝛽𝐵𝑢

𝑦 = 𝐶⊤𝑥
(4.177)

where 𝐴 ∈ R𝑞×𝑞, 𝐵 ∈ R𝑞×𝑛, and 𝐶 ∈ R𝑞; for 𝑢 ∈ R𝑛 and 𝑦 ∈ R. The transfer function

of this system can be shown to be,

𝑌 (𝑠) =
𝛽𝑏𝑝,1,1𝑠

𝑞−1 + 𝛽𝛼𝑏𝑝,1,2𝑠
𝑞−2 + . . .+ 𝛽𝛼𝑞−1𝑏𝑝,1,𝑞

𝑠𝑞 + 𝛼𝑎𝑝,1,1𝑠𝑞−1 + . . .+ 𝛼𝑞𝑎𝑝,1,𝑞
𝑈1(𝑠)

+ . . .+
𝛽𝑏𝑝,𝑛,1𝑠

𝑞−1 + 𝛽𝛼𝑏𝑝,𝑛,2𝑠
𝑞−2 + . . .+ 𝛽𝛼𝑞−1𝑏𝑝,𝑛,𝑞

𝑠𝑞 + 𝛼𝑎𝑝,𝑛,1𝑠𝑞−1 + . . .+ 𝛼𝑞𝑎𝑝,𝑛,𝑞
𝑈𝑛(𝑠)

(4.178)

where 𝑎𝑝,𝑖,𝑘 and 𝑏𝑝,𝑖,𝑘 are known coefficients of the transfer function for 𝐴, 𝐵, and

𝐶; and 𝛼 and 𝛽 are unknown parameters. The full system transfer function can be

succinctly written as,

𝑌 (𝑠) =
𝑛∑︁
𝑖=1

𝐺𝑖(𝑠)𝑈𝑖(𝑠) (4.179)

where 𝐺𝑖(𝑠) is the transfer function pertaining to the 𝑖𝑡ℎ input, 𝑈𝑖(𝑠). The observer

construction begins by choosing an asymptotically stable filter, 𝐹 , as,

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 . . . 0
...

... . . . ...

0 0 . . . 1

−𝑎𝑓,𝑘 −𝑎𝑓,𝑘−1 . . . −𝑎𝑓,1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.180)
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and an input vector, 𝑔,

𝑔 =
[︁
0 · · · 0 1

]︁⊤
(4.181)

The dynamics of the regressors are then defined as,

�̇�𝑢,1 = 𝐹𝜔𝑢,1 + 𝑔𝑢1
...

�̇�𝑢,𝑛 = 𝐹𝜔𝑢,𝑛 + 𝑔𝑢𝑛

�̇�𝑦 = 𝐹𝜔𝑦 + 𝑔𝑦

(4.182)

and an output, 𝑦, is constructed as,

𝑦 = 𝜃⊤

⎡⎢⎢⎢⎢⎢⎢⎣
𝜔𝑢,1

...

𝜔𝑢,𝑛

𝜔𝑦

⎤⎥⎥⎥⎥⎥⎥⎦ (4.183)

The parameters of the system are then defined as,

𝜃 =[︁
𝑏𝑢,1,𝑘 · · · 𝑏𝑢,1,1 𝑏𝑢,2,𝑘 · · · 𝑏𝑢,𝑖,𝑗 · · · 𝑏𝑢,𝑛,1 𝑏𝑦,𝑘 · · · 𝑏𝑦,1

]︁⊤ (4.184)
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The parameters, 𝜃, of the 𝑞𝑡ℎ order system with 𝑛 inputs can also be described in

terms of the subset of parameters, 𝜃* = [𝜃𝛽, 𝜃𝛼]
⊤, such that,

𝜃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃𝛽
𝑏𝑝,1,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑞−1

𝑏𝑝,1,𝑞
...

𝜃𝛽
𝑏𝑝,1,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁
𝑏𝑝,1,2

𝜃𝛽
𝜃𝛽
𝑏𝑝,1,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑞−1

𝑏𝑝,2,𝑞
...

𝜃𝛽
𝑏𝑝,1,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁
𝑏𝑝,𝑛,2

𝜃𝛽
𝑏𝑝,𝑛,1

𝑏𝑝,1,1

𝑎𝑓,𝑞 −
(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑞
𝑎𝑝,𝑞

...

𝑎𝑓,2 −
(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁2
𝑎𝑝,2

𝜃𝛼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.185)

The Jacobian, 𝐽 , is then defined as,

𝐽 =
𝜕𝜃

𝜕𝜃*
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏𝑝,1,𝑞
𝑏𝑝,1,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑞−1

−(𝑞 − 1)
𝑏𝑝,1,𝑞𝜃𝛽
𝑏𝑝,1,1𝑎𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑞−2

...
...

𝑏𝑝,1,2
𝑏𝑝,1,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁
− 𝑏𝑝,1,2
𝑏𝑝,1,1𝑎𝑝,1

𝜃𝛽

1 0

𝑏𝑝,2,𝑞
𝑏𝑝,1,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑞−1

−(𝑞 − 1)
𝑏𝑝,2,𝑞𝜃𝛽
𝑏𝑝,1,1𝑎𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑞−2

...
...

𝑏𝑝,𝑞,2
𝑏𝑝,1,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁
− 𝑏𝑝,𝑞,2
𝑏𝑝,1,1𝑎𝑝,1

𝜃𝛽

𝑏𝑝,2,1
𝑏𝑝,1,1

0

0 𝑞 𝑎𝑝,𝑞
𝑎𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁𝑞−1

...
...

0 2𝑎𝑝,2
𝑎𝑝,1

(︁
𝑎𝑓,1−𝜃𝛼
𝑎𝑝,1

)︁
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.186)

141



The update law is the same then as in Equation (4.154), such that,

˙̂
𝜃* = −𝛾J⊤�̂�𝑒 (4.187)

This construction was tested with a third-order MISO system, as shown in Figure

4-19, showing rapid convergence of the parameters. Figure 4-20 shows the stability

criteria of the system.

0 10 20 30 40 50 60 70 80 90 100

-200

0

200
u1

u2

u3

y

0 10 20 30 40 50 60 70 80 90 100

-50

0

50

ω

ωu,1,1

ωu,1,2

ωu,1,3

ωu,2,1

ωu,2,2

ωu,2,3

ωu,3,1

ωu,3,2

ωu,3,3

ωy,1

ωy,2

ωy,3

0 10 20 30 40 50 60 70 80 90 100

-2

0

2

θ̂
∗

θ
∗

θβ
θα

0 10 20 30 40 50 60 70 80 90 100

-100

0

100

ỹ

Figure 4-19: Test case for third-order MISO plant showing inputs, 𝑢(𝑡); outputs, 𝑦(𝑡);
regressors, 𝜔; and the convergence of the parameter subset, 𝜃*, comprised of 𝜃𝛽 and
𝜃𝛼.

142



0 10 20 30 40 50 60 70 80 90 100

-600

-400

-200

0

200

400

600

V̇
=

−
2γ

(

θ̃
T
ω̂

)

2

+
θ̃
T
∂
Φ

−
1

∂
t
θ̃

0 10 20 30 40 50 60 70 80 90 100

-1

0

1

V̇
(z
o
om

ed
)

0 10 20 30 40 50 60 70 80 90 100

-5

0

5

θ̂
∗

θ
∗

θβ
θα

Figure 4-20: Lyapunov stability terms and parameter convergence for a third-order
MISO system.

Extension to Multiple Input, Multiple Output System

The next iteration of the observer is to apply the system to a multiple input, multiple

output system, such as,

�̇� = 𝛼𝐴𝑥+ 𝛽𝐵𝑢

𝑦 = 𝐶⊤𝑥
(4.188)

where 𝐴 ∈ R𝑞×𝑞, 𝐵 ∈ R𝑞×𝑛, and 𝐶 ∈ R𝑞×𝑚; for 𝑢 ∈ R𝑛 and 𝑦 ∈ R𝑚. Each output

channel, 𝑌𝑗(𝑠), has a transfer function defined as,

𝑌𝑗(𝑠) =
𝛽𝑏𝑝,1,𝑗,1𝑠

𝑞−1 + 𝛽𝛼𝑏𝑝,1,𝑗,2𝑠
𝑞−2 + . . .+ 𝛽𝛼𝑞−1𝑏𝑝,1,𝑗,𝑞

𝑠𝑘 + 𝛼𝑎𝑝,1,𝑗,1𝑠𝑞−1 + . . .+ 𝛼𝑞𝑎𝑝,1,𝑗,𝑞
𝑈1(𝑠)

+ . . .+
𝛽𝑏𝑝,𝑛,𝑗,1𝑠

𝑞−1 + 𝛽𝛼𝑏𝑝,𝑛,𝑗,2𝑠
𝑞−2 + . . .+ 𝛽𝛼𝑞−1𝑏𝑝,𝑛,𝑗,𝑞

𝑠𝑞 + 𝛼𝑎𝑝,𝑛,𝑗,1𝑠𝑞−1 + . . .+ 𝛼𝑞𝑎𝑝,𝑛,𝑗,𝑞
𝑈𝑛(𝑠)

(4.189)
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This expression can be succinctly written as,

𝑌𝑗(𝑠) =
𝑛∑︁
𝑖=1

𝐺𝑖,𝑗(𝑠)𝑈𝑖(𝑠) (4.190)

for 𝑗 ∈ [1 · · ·𝑚]. The dynamics of the regressors are defined as,

�̇�𝑢,1 = 𝐹𝜔𝑢,1 + 𝑔𝑢1
...

�̇�𝑢,𝑛 = 𝐹𝜔𝑢,𝑛 + 𝑔𝑢𝑛

�̇�𝑦,1 = 𝐹𝜔𝑦,1 + 𝑔𝑦1
...

�̇�𝑦,𝑚 = 𝐹𝜔𝑦,𝑚 + 𝑔𝑦𝑚

(4.191)

and an equivalent output, 𝑦𝑗, for each output, 𝑗, is defined as,

𝑦𝑗 = 𝜃⊤𝑗

⎡⎢⎢⎢⎢⎢⎢⎣
𝜔𝑢,1

...

𝜔𝑢,𝑛

𝜔𝑦,𝑗

⎤⎥⎥⎥⎥⎥⎥⎦ (4.192)

The parameters, 𝜃𝑗, for the output channel, 𝑗, are defined as,

𝜃𝑗 =
[︁
𝑏𝑢,1,𝑗,𝑘 · · · 𝑏𝑢,1,𝑗,1 𝑏𝑢,2,𝑗,𝑘 · · · 𝑏𝑢,𝑛,𝑗,1 𝑏𝑦,𝑗,𝑘 · · · 𝑏𝑦,𝑗,1

]︁⊤
(4.193)

An estimated system, ̂︀𝑌 = diag
(︁̂︀Θ⊤̂︀Ω)︁ generates an error vector, 𝐸, such that,

𝐸 = diag
(︁̂︀Θ⊤̂︀Ω)︁− 𝑌 (4.194)

where the parameter matrix, ̂︀Θ, is defined as,

̂︀Θ =
[︁
𝜃1 · · · 𝜃𝑚

]︁
(4.195)
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and the regressor matrix, ̂︀Ω, as,

̂︀Ω =
[︁
�̂�1 · · · �̂�𝑚

]︁
(4.196)

The update law for the subset of parameters, 𝜃*, is defined as,

˙̂
𝜃* = −𝛾J⊤̂︀Ω𝐸 (4.197)

where 𝛾 > 0, and the concatenated Jacobian, J ∈ R𝑚𝑞(𝑛+1)×2, is defined as,

J =

⎡⎢⎢⎢⎣
J1

...

J𝑚

⎤⎥⎥⎥⎦ (4.198)

for J𝑗 =
𝜕𝜃𝑗
𝜕𝜃*

⃒⃒⃒
𝜃*=𝜃*𝑗

, as in Equation (4.186). Additionally, the regressor tensor, ̂︀Ω ∈
R𝑚𝑞(𝑛+1)×𝑚, is defined as,

̂︀Ω =

⎡⎢⎢⎢⎣
�̂�1 · · · 0
... . . . ...

0 · · · �̂�𝑚

⎤⎥⎥⎥⎦ (4.199)

A simulation of this formulation was conducted, and results showing two salient points

can be scene in Figures 4-21 and 4-22. In Figure 4-21, initial conditions were chosen

such that no prior knowledge of the parameters were assumed. It can be seen that

the observer enters a local minimum with error entering a marginally stable state.

It was noted, however, that when the initial conditions were started arbitrarily high,

the system would avoid local minima, and converge to the true parameters. This is

shown in Figure 4-22, with initial conditions at 500% their true values, and rapid

parameter convergence is observed.
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ỹ

Figure 4-21: Test case for a third-order MIMO plant showing the convergence of
the parameter subset, 𝜃*, comprised of 𝜃𝛽 and 𝜃𝛼; and the error output, 𝑦𝑗. The
parameters were initialized to 𝜃*0 = 0.
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Figure 4-22: Test case for a third-order MIMO plant showing the convergence of
the parameter subset, 𝜃*, comprised of 𝜃𝛽 and 𝜃𝛼; and the error output, 𝑦𝑗. The
parameters were initialized to 𝜃*0 = 5𝜃*.
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Extension to Multiple Constant System

The final test case of this observer composition is that of the multiple-constant case,

for a system,

�̇� = �̄�𝐴𝑥+ 𝛽𝐵𝑢

𝑦 = 𝐶⊤𝑥
(4.200)

where 𝐴 ∈ R𝑞×𝑞, is defined as, 𝐵 ∈ R𝑞×𝑛, and 𝐶 ∈ R𝑞×𝑚; for 𝑢 ∈ R𝑛 and 𝑦 ∈ R𝑚.

To determine the relationship of the subset of parameters to the full set, a transfer

function must be determined between the input and output channels. First, a SISO

system is used as an example, but can be generalized to an 𝑚 output, 𝑛 input MIMO

system. This SISO takes the form,

𝐴 =

⎡⎢⎢⎢⎣
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎦ 𝐵 =

⎡⎢⎢⎢⎣
𝑏1

𝑏2

𝑏3

⎤⎥⎥⎥⎦ 𝐶 =
[︁
1 0 0

]︁
(4.201)

and the coefficient matrices, �̄� and 𝛽 are defined as,

�̄� =

⎡⎢⎢⎢⎣
𝛼1 0 0

0 𝛼2 0

0 0 𝛼3

⎤⎥⎥⎥⎦ 𝛽 =

⎡⎢⎢⎢⎣
𝛽1 0 0

0 𝛽2 0

0 0 𝛽3

⎤⎥⎥⎥⎦ (4.202)

The transfer function can be defined as,

𝑌 (𝑠)

𝑈(𝑠)
=
𝑃 (𝑠)

𝑄(𝑠)
(4.203)

with the numerator, 𝑃 (𝑠),

𝑃 (𝑠) = (𝛽1𝑏1)𝑠
2 + (−𝛽1𝑏1𝛼3(𝑎33 + 𝑎22) + 𝛽2𝑏2(𝛼1𝑎12) + 𝛽3𝑏3(𝛼1𝑎13))𝑠

+ (𝛽1𝑏1𝛼2𝛼3(𝑎22𝑎33 − 𝑎23𝑎32) + 𝛽2𝑏2𝛼1𝛼3(𝑎13𝑎32 − 𝑎12𝑎33)

+ 𝛽3𝑏3𝛼1𝛼2(𝑎12𝑎23 − 𝑎13𝑎22))

(4.204)
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and the denominator, 𝑄(𝑠),

𝑄(𝑠) = 𝑠3 − (𝛼1𝑎11 + 𝛼2𝑎22 + 𝛼3𝑎33) 𝑠
2 + (𝛼1𝛼2(𝑎11𝑎22 − 𝑎12𝑎21)

+ 𝛼1𝛼3(𝑎11𝑎33 − 𝑎13𝑎31) + 𝛼2𝛼3(𝑎22𝑎33 − 𝑎23𝑎32))𝑠

+ 𝛼1𝛼2𝛼3(−𝑎11(𝑎22𝑎33 − 𝑎23𝑎32) + 𝑎12(𝑎21𝑎33 − 𝑎23𝑎31)

− 𝑎13(𝑎21𝑎32 − 𝑎22𝑎31))

(4.205)

It is noted that the elegant solution of Equation (4.135) no longer emerges, and

instead, the transfer function form is dependent on the order. This can be achieved

in a recursive means, but an alternative method is proposed below. The filter, 𝐹 , of

the equivalent system are again defined by,

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 . . . 0
...

... . . . ...

0 0 . . . 1

−𝑎𝑓,𝑞 −𝑎𝑓,𝑞−1 . . . −𝑎𝑓,1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.206)

and an input vector, 𝑔,

𝑔 =
[︁
0 · · · 0 1

]︁⊤
(4.207)

The regressor dynamics are defined as,

�̇�𝑢,1 = 𝐹𝜔𝑢,1 + 𝑔𝑢1
...

�̇�𝑢,𝑛 = 𝐹𝜔𝑢,𝑛 + 𝑔𝑢𝑛

�̇�𝑦,1 = 𝐹𝜔𝑦,1 + 𝑔𝑦1
...

�̇�𝑦,𝑚 = 𝐹𝜔𝑦,𝑚 + 𝑔𝑦𝑚

(4.208)
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with an output, 𝑦𝑗, defined as,

𝑦𝑗 = 𝜃⊤𝑗

⎡⎢⎢⎢⎢⎢⎢⎣
𝜔𝑢,1

...

𝜔𝑢,𝑛

𝜔𝑦,𝑗

⎤⎥⎥⎥⎥⎥⎥⎦ (4.209)

The parameters, 𝜃𝑗, are notationally defined as,

𝜃𝑗 =
[︁
𝑏𝑢,1,𝑗,𝑞 · · · 𝑏𝑢,1,𝑗,1 𝑏𝑢,2,𝑗,𝑞 · · · 𝑏𝑢,𝑛,𝑗,1 𝑏𝑦,𝑗,𝑞 · · · 𝑏𝑦,𝑗,1

]︁⊤
(4.210)

The equivalent system is alternatively defined as,

˙̂𝑥 = ^̄𝛼𝐴�̂�+ ^̄𝛽𝐵𝑢

𝑦 = 𝐶�̂�
(4.211)

where the subset of parameters, 𝜃*, are comprised of the coefficients of ^̄𝛼 and ^̄𝛽. An

estimated transfer function, ̂︀𝐺𝑖,𝑗(𝑠), is then defined as,

̂︀𝐺𝑖,𝑗(𝑠) = 𝐶𝑗(𝑠I− ^̄𝛼𝐴)−1 ^̄𝛽𝐵𝑖 =
�̂�𝑖,𝑗,1𝑠

𝑞−1 + · · ·+ �̂�𝑖,𝑗,𝑞
𝑠𝑞 + �̂�𝑗,1𝑠𝑞−1 + · · ·+ �̂�𝑗,𝑞

(4.212)

Using this transfer function, a full output channel, ̂︀𝑌𝑗, is defined as,

̂︀𝑌𝑗(𝑠) = 𝑛∑︁
𝑖=1

̂︀𝐺𝑖,𝑗(𝑠)𝑈𝑖(𝑠) (4.213)

for 𝑗 = [1 · · ·𝑚]. The estimated parameters, 𝜃𝑗, are then defined as,

𝜃𝑗 =[︁
�̂�1,𝑗,𝑞 · · · �̂�1,𝑗,1 �̂�2,𝑗,𝑞 · · · �̂�𝑛,𝑗,1 𝑎𝑓,𝑞 − �̂�𝑗,𝑞 · · · 𝑎𝑓,1 − �̂�𝑗,1

]︁⊤ (4.214)

where �̂�𝑖,𝑗,𝑘 and �̂�𝑖,𝑗,𝑘 are defined as in Equation (4.212), 𝑎𝑓,𝑘 are the coefficients of the
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filter, 𝐹 . The Jacobian, 𝐽𝑗, for each output channel, 𝑗, can be constructed as,

𝐽𝑗 =

[︂
𝜕𝜃𝑗
𝜕𝛽1

⃒⃒⃒
𝛽1=𝛽1

· · · 𝜕𝜃𝑗
𝜕𝛽𝑞

⃒⃒⃒
𝛽𝑞=𝛽𝑞

𝜕𝜃𝑗
𝜕𝛼1

⃒⃒⃒
𝛼1=�̂�1

· · · 𝜕𝜃𝑗
𝜕𝛼𝑞

⃒⃒⃒
𝛼𝑞=�̂�𝑞

]︂
(4.215)

The Jacobian can be explicitly defined, as previously with Equation (4.193), however,

the Jacobian must be defined separately for any 𝑞 states or definition of unknown

parameters. Therefore, in the interest of generality, a numerically perturbed Jacobian

is used, defined by,

𝜕𝜃𝑗
𝜕𝛽𝑘

⃒⃒⃒⃒
𝛽𝑘=𝛽𝑘

≈ 1

Δ𝑥

(︁
𝜃𝑗|𝛽𝑘=𝛽𝑘+Δ𝑥 − 𝜃𝑗|𝛽𝑘=𝛽𝑘

)︁
𝜕𝜃𝑗
𝜕𝛼𝑘

⃒⃒⃒⃒
𝛼𝑘=�̂�𝑘

≈ 1

Δ𝑥

(︁
𝜃𝑗|𝛼𝑘=�̂�𝑘+Δ𝑥 − 𝜃𝑗|𝛼𝑘=�̂�𝑘

)︁ (4.216)

for 𝑘 ∈ [1 · · · 𝑞]. This is achieved by finding the first order difference of the parameter

function, where the step size was chosen as Δ𝑥 = 1𝑒 − 6. Finally, the update law is

defined similarly as,
˙̂
𝜃* = −𝛾J⊤̂︀Ω𝐸 (4.217)

with J defined as in Equation (4.198), and ̂︀Ω defined as in Equation (4.199). This

observer was simulated using the inputs and outputs, and subsequently the regressors

shown in Figure 4-23. Figure 4-24 shows the rapid convergence for initial conditions
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Figure 4-23: Simulated inputs, 𝑢𝑖(𝑡); outputs, 𝑦𝑖(𝑡) and their associated regressors,
𝜔𝑖,𝑗,𝑘.
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set to 𝜃*0 = 1.5𝜃*. This is consistent with the results of Figure 4-22, which also

show rapid convergence with higher initial conditons. Figure 4-25 shows the results

of the parameter initial conditions, 𝜃*0 = 0. In both Figure 4-24 and 4-25, the top
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Figure 4-24: Jacobian observer MIMO, multi-constant system simulation, with
𝜃*0 = 1.5𝜃*, and inputs generated with a combination of cosine signals of varying
frequencies.
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Figure 4-25: Jacobian observer MIMO, multi-constant system simulation, with 𝜃*0 =
0, and inputs generated with a combination of cosine signals of varying frequencies.

plot shows the normalized value of the parameter, 𝜃*𝑖 , where a value of 1 indicates

convergence. The bottom plots show the relative output error, 𝑦. These results show

that the Jacobian adaptive observer also rapidly converges onto parameters with no

a-priori knowledge, as consistent with Figure 4-21.
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Application to the ANCF II Model

The next appropriate application is to a system akin to the electrolyte dynamics of

Equation (3.157). For this purpose, a simulation of a linear basis electrolyte concen-

tration, 𝑐*𝑒, will be fed through the Jacobian adaptive observer structure. This system

assumes there is an invertible function of the electrolyte potential, 𝜑𝑒, as shown in

Figure 4-26.

𝐺𝑐𝑒(𝑠) 𝑓−1𝜑𝑒
𝑓𝜑𝑒

𝑗*
𝑐𝑒

𝑗*

Δ𝑐*𝑒
𝑐𝑒,0𝜑𝑒

Figure 4-26: Block diagram of the electrolyte subsystem, assuming measurable inputs
and outputs.

The system is defined by,

�̇�*𝑒 = 𝐴𝑐𝑒 +𝐵𝛾𝑗*

𝑐*𝑒 = 𝐶𝑐*𝑒

(4.218)

where 𝛾 is a known, scalar conditioning gain applied to the molar flux, 𝑗*. The system

matrices: 𝐴, 𝐵, and 𝐶, are defined by,

𝐴 = M−1
* K* (4.219)

for 𝐴 ∈ R𝑁×𝑁 ;

𝐵 = 𝛾−1M−1
* L* (4.220)

for 𝐵 ∈ R𝑁×𝑁 ; and,

𝐶 = I (4.221)

for 𝐶 ∈ R𝑁×𝑁 . The weight matrix, M*, as used in Equations (4.219) and (4.220) is
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constructed using an element matrix defined by,

M𝑖 =

∫︁ 1

0

𝑣𝑖𝑣
⊤
𝑖 𝑑�̄�𝑖 (4.222)

where the basis function, 𝑣𝑖, is defined as in Equation (3.108). M𝑖 is then broken into

its individual components, such that,

M𝑖 =

⎡⎣ M𝑖
11 M𝑖

12

M𝑖
21 M𝑖

22

⎤⎦ (4.223)

Then the full matrix, M*, is defined as,

M* =

⎡⎢⎢⎢⎢⎢⎢⎣
M1

11 M1
12

M1
21 M1

22 + M2
11 M2

12

M2
21

. . . M𝑁−1
12

M𝑁−1
21 M𝑁−1

22

⎤⎥⎥⎥⎥⎥⎥⎦ (4.224)

Additionally, the stiffness matrix, K*, is constructed in a similar fashion, such that,

K𝑖 =

∫︁ 1

0

𝑣𝑖
𝑑2𝑣⊤𝑖
𝑑�̄�2𝑖

𝑑�̄�𝑖

= −
∫︁ 1

0

𝑑𝑣𝑖
𝑑�̄�𝑖

𝑑𝑣⊤𝑖
𝑑�̄�𝑖

𝑑�̄�𝑖

(4.225)

broken into its individual components,

K𝑖 =

⎡⎣ K𝑖
11 K𝑖

12

K𝑖
21 K𝑖

22

⎤⎦ (4.226)
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The full stiffness matrix, K*, is then constructed as,

K* =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷𝑒,1

(𝑙′1)
2K1

11
𝐷𝑒,1

(𝑙′1)
2K1

12

𝐷𝑒,1

(𝑙′1)
2K1

21
𝐷𝑒,1

(𝑙′1)
2K1

22 +
𝐷𝑒,2

(𝑙′2)
2K2

11
𝐷𝑒,2

(𝑙′2)
2K2

12

𝐷𝑒,2

(𝑙′2)
2K2

21
. . . 𝐷𝑒,𝑁−1

(𝑙′𝑁−1)
2K𝑁−1

12

𝐷𝑒,𝑁−1

(𝑙′𝑁−1)
2K𝑁−1

21
𝐷𝑒,𝑁−1

(𝑙′𝑁−1)
2K𝑁−1

22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.227)

Finally, the input matrix, L*, uses the same matrix component, M𝑖, as in Equation

(4.223), with no separator elements, such that,

L* = 𝛽

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1
11 M1

12

M1
21 M1

22 + M2
11 M2

12

M2
21 M2

22

M4
11 M4

12

M4
21 M4

22 + M5
11 M5

12

M5
21 M5

22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.228)

for 2 elements in the anode, 1 element in the cathode and 2 elements in the separator.

The input parameters, 𝛽 ∈ R𝑁×𝑁 , are defined as the diagonal matrix,

𝛽 = diag
(︂[︁

𝑡0𝑎𝑎
−

𝜖−𝑒

𝑡0𝑎𝑎
−

𝜖−𝑒

𝑡0𝑎𝑎
−

𝜖−𝑒

𝑡0𝑎𝑎
+

𝜖+𝑒

𝑡0𝑎𝑎
+

𝜖+𝑒

𝑡0𝑎𝑎
+

𝜖+𝑒

]︁⊤)︂
(4.229)

The separator element is not included in the L* matrix because there are no flux

induced dynamics in the separator, only diffusion.

The known portions of the system include M𝑖 and K𝑖, while the unknown param-

eters from a BMS perspective are,

𝜃* =

[︂
𝑡0𝑎𝑎

−

𝜖−𝑒

𝑡0𝑎𝑎
+

𝜖+𝑒

𝐷𝑒,−

(𝑙′−)
2

𝐷𝑒,𝑠

(𝑙′𝑠)
2

𝐷𝑒,+

(𝑙′+)
2

]︂⊤
(4.230)

It is assumed that each volume has its own static diffusion coefficient, which is used

for elements within that electrode. Additionally, each volume has its own respective
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input coefficients. A Jacobian adaptive observer was constructed as prescribed earlier

in Section 4.3.3, to estimate an unknown set of parameters, 𝜃*, using the update law,

˙̂
𝜃* = −Γ(𝑡)J⊤̂︀Ω𝐸 (4.231)

where the learning gain was chosen as,

Γ(𝑡) =

⎧⎨⎩ 0 𝑡 < 𝑡𝑙

10 𝑡 ≥ 𝑡𝑙
(4.232)

The time-varying learning gain, Γ(𝑡), is defined as such to ensure the regressors are

mostly converged onto their true values, �̃� → 0, by the learning time, 𝑡𝑙.

A persistently exciting signal representing the conditioned molar flux, 𝛾𝑗*, was

applied, 𝑈(𝑡); with a normalized change in electrolyte concentration, Δ𝑐*𝑒(𝑡)
𝑐*𝑒,0

, measured

as the output, 𝑌 (𝑡). These signals are shown in Figure 4-27, with 𝑐*𝑒,0 = 1000, for

a duration of 1000 seconds. Figure 4-28 shows the resulting simulation when the
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Figure 4-27: Inputs, 𝑢𝑖(𝑡); and outputs, 𝑦𝑖(𝑡), for the simulated electrolyte plant.

unknown parameters were initialized to 𝜃*0 = 1.5𝜃*. Figure 4-29 shows the simulation

results for an initialized parameter value of 𝜃*0 = 0. In both cases, learning was

started at 𝑡𝑙 = 100 s, at which point the parameters rapidly converge to their true

values, normalized to a value of 1. It is noted that the separator parameters, ̂︂𝐷𝑒,2

(𝑙′2)
2 ,

converge the slowest in both cases, as the dynamics of the separator rely on diffusion

characteristics to be observed.
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Figure 4-28: Jacobian observer for electrolyte plant, with 𝜃*0 = 1.5𝜃*. The adaptive
learning is started at 𝑡𝑙 = 100 s.
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Figure 4-29: Jacobian observer for electrolyte plant, with 𝜃*0 = 0. The adaptive
learning is started at 𝑡𝑙 = 100 s.
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4.4 Full Observer Construction and Challenges

The three observers described in Section 4.3 constitute the foundational framework

for a BMS to be constructed using the ANCF II model structure. However, this

endeavor only handles the spatiotemporal dynamics, with a method for determining

the molar flux a-priori. This section will now discuss some approaches and difficulties

of combining these observers into a complete structure. The difficulty in using higher

order models is the mutual dependence of the output voltage on the solid potential,

𝜑𝑠(𝑥, 𝑡); the electrolyte potential, 𝜑𝑒(𝑥, 𝑡); the open-circuit potential, 𝒰(𝑥, 𝑡); and

ohmic losses, 𝑅𝑓𝐼(𝑡). For the purposes of this section, ohmic losses are ignored, as they

were in Chapter 3. Error in any of these terms may be masked by error in other terms,

and therefore the system may have infinite solutions for a given output. The Butler-

Volmer kinetics constrain this to a single set, allowing for the accurate evolution of

concentration state dynamics. The inversion of these functions, and its application to

the work discussed in Section 4.3.2, is addressed in Section 4.4.1. Figure 4-30 shows

∑︀
∑︀

𝑓𝒰

𝑓𝜑𝑒

𝑓𝜑𝑠

𝑓𝐵𝑉𝐾

𝐺𝑝(𝑠, 𝑡)

̂︀𝐺𝑐𝑠(𝑠)

̂︀𝐺𝑐𝑒(𝑠)

̂︀𝐺𝑗*(𝑠, 𝑡)

𝐼(𝑡) 𝑉 (𝑡)

𝑉 (𝑡)

𝐸𝑠

𝐸𝑒
𝑉 (𝑡)

𝑗 ′*𝑗 ′*

𝑗* ^̄𝑐*𝑠

𝑞*

𝑐𝑒

̂︀𝜑𝑒
̂︀𝒰

̂︀𝜑𝑠
̂︀𝜂
−

Figure 4-30: Block diagram of a notional full-scale observer using the adaptive ob-
servers constructed in Section 4.3. The plant model, 𝐺𝑝(𝑠, 𝑡), is theoretically replaced
by a battery cell.

the notional full-scale observer. In this case, the plant model, 𝐺𝑝(𝑠, 𝑡), can be replaced

by measurements from a battery cell. Section 4.3 describes the construction of the

adaptive observers for the solid concentration, 𝐺𝑐𝑠(𝑠); the electrolyte concentration,
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𝐺𝑐𝑒(𝑠); and the a-priori flux plant, 𝐺𝑗*(𝑠, 𝑡). For each of these, it was assumed that

there was a completely invertible function of the contribution of the overpotential

to each of these concentrations. Namely, that the error vectors, 𝐸𝑒 and 𝐸𝑠, were

perfectly accurate. However, this is not the case, and the sensitivity of the observers

may vary as a function of input current and concentrations.

The problem is then determining how much of a calculated output voltage error

is a function of each of the cell potentials. To minimize the set of possible solutions,

the lithium concentrations can be constrained such that the total lithium in the

cell remains constant. This has been achieved for the SPM [23] [35], but that model

ignores variation in the electrolyte, and as such, the prescribed means of constraint are

not directly applicable. Another method of overcoming this challenge is to implement

a machine learning algorithm to determine the appropriate learning gains, Γ, of the

observers. One approach to this is discussed in Section 4.4.2.

4.4.1 Nonlinear Butler-Volmer Kinetics Inversion

At any given time, there exists an estimate for the states representing the solid concen-

tration, ^̄𝑐*𝑠(𝑡) and 𝑞*(𝑡); the electrolyte concentration, 𝑐𝑒(𝑡); and an a-priori estimate

of the molar flux, 𝑗*(𝑡). As shown in Section 3.5, these values can be converted to the

open-circuit potential, ̂︀𝒰(𝑡), and the electrolyte potential, ̂︀𝜑𝑒(𝑡). Additionally, the

a-priori estimate of the flux, 𝑗*(𝑡), can be used to calculate the estimated solid poten-

tial, ̂︀𝜑𝑠(𝑡). These terms combine to form the overpotential, ̂︀𝜂(𝑡); and the exchange

current density, ̂︀𝑖0. The resulting molar flux, 𝑗 ′*, calculated in a similar fashion to

Equation (3.187), becomes,

𝑗 ′±𝛿,𝑗 = 2̂︀𝑖±0𝛿,𝑗 sinh(︂ 𝐹

2𝑅𝑇
̂︀𝜂𝛿,𝑗)︂ (4.233)

where 𝑗 ′* is a transformation of 𝑗 ′±𝛿,𝑗, such that,

𝑇𝑗 ′* = 𝑗 ′𝛿 (4.234)
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This emergent molar flux, 𝑗 ′*, is used as the "measured" molar flux described in the

a-priori observer discussion, where an error term,

𝑗* = 𝑗* − 𝑗 ′* (4.235)

drives the update of the regressor coefficients, as in Equation (4.115). The concept is

that as 𝑗* → 0 and the error in the voltage output, 𝑉 (𝑡) → 0, the system converges

to the true states.

4.4.2 Machine Learning with Applications to ABMSs

The final open problem is determining how much of the output voltage error is a

function of error in each of the concentrations. The larger this error, the more learning

of the states and parameters can be achieved. Referring to Figure 4-30, the error

terms, 𝐸𝑠 and 𝐸𝑒, are not directly measurable. One means of constructing these

vectors is an invertible function of potentials, such that,

𝑐′*𝑠𝑠 = 𝑓−1
𝒰 (𝒰 ′*) (4.236)

𝑐′*𝑒 = 𝑓−1
𝜑𝑒

(𝜑′*
𝑒 , 𝐼(𝑡)) (4.237)

These functions exist, but what is unknown is the overpotential that is a summation

of the terms, 𝒰 and 𝜑𝑒, and subtracted from the solid potential, 𝜑𝑠. The only

measurable output is the voltage, 𝑉 (𝑡), which is the difference between the solid

potential, 𝜑𝑠, at the current collectors. Therefore, for every node, 𝑖, it is desirable to

have a formulation,

𝒰 ′*
𝑖 = 𝛼𝑖(𝑡)

(︁̂︀𝜑*
𝑠,𝑖 − 𝜂′*𝑖

)︁
(4.238)

𝜑′*
𝑒,𝑖 = 𝛽𝑖(𝑡)

(︁̂︀𝜑*
𝑠,𝑖 − 𝜂′*𝑖

)︁
(4.239)

159



for 0 ≤ 𝛼𝑖(𝑡), 𝛽𝑖(𝑡) < 1 and constrained by 𝛼𝑖(𝑡) + 𝛽𝑖(𝑡) = 1. Therefore, 𝛽𝑖 = 1− 𝛼𝑖.

Additionally, the overpotential, 𝜂′*, is some component of the solid potential, ̂︀𝜑*
𝑠,

𝜂′*𝑖 = 𝛾𝑖(𝑡)̂︀𝜑*
𝑠,𝑖 (4.240)

where 0 < 𝛾𝑖(𝑡) < 1. The solid potential is defined as,

∫︁ 1

0

𝑣𝑖
𝑑2𝑣⊤𝑖
𝑑�̄�2𝑖

𝑑�̄�𝑖̂︀𝜑*
𝑠,𝑖 = 𝑎𝑖𝐹

∫︁ 1

0

𝑣𝑖𝑣
⊤
𝑖 𝑑�̄�𝑖�̂�

*
𝑖 (4.241)

with boundary conditions,

̂︀𝜑*
𝑠,𝑖(0

−, 𝑡) = 0̂︀𝜑*
𝑠,𝑖(0

+, 𝑡) = 𝑉 (𝑡)
(4.242)

The values of 𝛼(𝑡), 𝛽(𝑡) and 𝛾(𝑡) are nebulous, time-varying gains that must be

estimated. One such way of achieving this end is to construct a machine learning

algorithm that uses full knowledge of a simulated system to establish a probability

distribution for these terms, to be used in-situ, when only the measured values of

current, 𝐼(𝑡), and voltage, 𝑉 (𝑡), are available. Subsequently, the estimated concen-

tration states, ^̄𝑐*𝑠(𝑡), 𝑞*(𝑡) and 𝑐𝑒(𝑡), would be supplemented in the implemented

version. Using a labeled input layer to the neural network,

[︁
𝑉 (𝑡) 𝐼(𝑡) 𝑐*𝑠,𝑖(𝑡) 𝑞*𝑖 (𝑡) 𝑐⊤𝑒,𝑖(𝑡)

]︁⊤
(4.243)

and an output layer, [︁
𝛼𝑖(𝑡) 𝛾𝑖(𝑡)

]︁⊤
(4.244)

a probability distribution can be generated for the outputs of Equation (4.246), as

a function of the features shown in Equation (4.243). This is achieved by many

simulations to enumerate the myriad hidden layers of this hypothetical system. Sub-

sequently, for the full observer, this same neural network is fed with an input layer
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of, [︁
𝑉 (𝑡) 𝐼(𝑡) ^̄𝑐*𝑠,𝑖(𝑡) 𝑞*𝑖 (𝑡) 𝑐⊤𝑒,𝑖(𝑡)

]︁⊤
(4.245)

to determine the estimated outputs,

[︁
�̂�𝑖(𝑡) 𝛾𝑖(𝑡)

]︁⊤
(4.246)

in this way, it is possible to determine the overpotential, and its contributions of

electrolyte potential and open-circuit potential. Other input features could include

filtered current inputs and voltage outputs, similar to the method used to estimate

the molar flux. In that way, error vectors, 𝐸𝑠 and 𝐸𝑒, can be constructed as,

𝐸𝑠,𝑖 = 𝑐*𝑠𝑠,𝑖 − 𝑓−1
𝒰

(︁
[1− �̂�𝑖(𝑡)𝛾𝑖(𝑡)] ̂︀𝜑*

𝑠,𝑖

)︁
(4.247)

𝐸𝑒,𝑖 = 𝑐𝑒,𝑖 − 𝑓−1
𝜑𝑒

(︁
[1− 𝛾𝑖(𝑡)− �̂�𝑖(𝑡)𝛾𝑖(𝑡)] ̂︀𝜑*

𝑠,𝑖, 𝐼(𝑡)
̂︀𝜑*
𝑠,𝑖

)︁
(4.248)

for 𝑖 ∈ [1 · · ·𝑁 ]. Previously in literature [24] [23], methods for determining the

overpotential of the single-particle model have been established, but the challenge

facing higher order models is a non-definite electrolyte concentration. These states

need to be estimated, and there is no directly invertible Butler-Volmer kinetics.
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Chapter 5

Conclusion

The sections of this thesis are presented to give the reader a reasonably complete

understanding of the state of the art with respect to battery management systems.

The importance of Li-ion battery cells is increasing as consumers demand highly

mobile technologies requiring high energy density power storage. This has been an

intense area of focus in literature, and an overview of batteries is presented in Chapter

1. Yet this demand is met with another challenge, beyond the chemistry required to

suit these needs: estimating the performance and life of these cells once deployed.

Just as a conventional internal combustion vehicle needs a gas gauge, so too does a

high performance battery.

The concept of a state and parameter estimator, for the purposes of informed

control, is achieved through the implementation of a battery management system

(BMS), as discussed in Chapter 2. Conventionally, a BMS is constructed by linearizing

a variety of the models presented in Chapter 3, but the linearization of these models

can only produce accurate results if the discharging or charging profile does not include

high currents relative to the capacity of the battery, notionally 𝐼(𝑡) ≤ 1𝐶. Therefore,

in the interest of safety and efficiency, better models need to be constructed with

the intention of control and estimation as a focus during their design. Additionally,

adaptive observers need to be designed using these models as a basis for estimation,

such that metrics like the state of charge (SoC) and state of health (SoH) can be

determined.
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5.1 Summary of Results

This thesis works to solve the latter two problems addressed above. It is shown in

Chapter 3 the complete formulation of a high accuracy battery model, established

by previous work [5], with new features such as improved computational efficiency

and agnostic determination of diffusion characteristics. This thesis goes on to fur-

ther reduce the order of the model, as described in Section 3.5, without significant

reduction of accuracy in the results, as shown in Table 3.2 and 3.3. This novel Li-ion

model, known as the ANCF II, leverages mixed basis functions to ensure high accu-

racy results, while reducing the degrees of freedom for less critical states. This model

is shown to have sufficient accuracy for the purposes of adaptive observer design.

Once the accuracy of the new model is shown, this thesis continues by creating

foundational adaptive observers for the dynamic plant of the ANCF II model in

Chapter 4. Section 4.3.1 describes the construction of an adaptive observer for the

solid electrode, using a novel combination of spatio-temporal filters for the purpose

of the matrix regressor construction. Section 4.3.2 shows the novel construction of

an a-priori estimate of molar flux using output voltage measurements, and a set of

filtered input current values. Finally, Section 4.3.3 shows the novel construction of a

Jacobian MIMO adaptive observer, intended to learn a subset of parameters used to

define a known system matrix. This allows all learning to be confined to the space of

unknowns.

5.2 Future Work

The future of this research effort is briefly described in Section 4.4. The adaptive

observers presented in Chapter 4 define parameter estimation of the dynamic states,

but the error vector that defines the progression of the parameter estimation is not

directly measurable as an output. Therefore, it is suggested to implement a machine

learning algorithm to determine the error vector relative to both the solid concentra-

tion states and the electrolyte concentration states. This algorithm could implement
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a neural network that takes the measured output voltage and input current, as well

as the current state estimates, as an input layer, and provide a fractional coefficient

vector as an output layer to define the various potentials within the cell. The key

in this formulation is that there needs to be a high enough correlation between the

truly measurable values and the output layer, with minimal dependency on the cur-

rent state values. To ensure this, additional filters of the input current, 𝐼(𝑡), can be

provided for the input layer.

Once this inversion process is achieved, a full adaptive observer for the ANCF II

model will have been constructed. Using this observer, a system designer can im-

plement new, previously intractable control algorithms based on higher fidelity cell

information. Such an availability will greatly increase the capability of a given cell,

especially in severe contexts such as that of an electric vehicle, while subsequently

reducing the cost of implementation by ensuring a cell is properly sized. It is within

this framework that the next generation of mobile technology will transcend the lim-

itations currently facing batteries and their management, allowing wider adoption of

low-cost, high capacity energy storage, while guaranteeing safe and enduring opera-

tion.
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